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Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to: 

•	 Analyze the nature of computing 
(for the purposes of this 
introduction) in addition to 
constructing instructions for a 
computer to follow;

•	 Use the basic terminology 
surrounding computing and be 
able to correctly identify terms 
such as input, output, console, 
GUI, lines of code, compiling, and 
executing;

•	 Describe the value of Python as 
well as how to develop using 
Python;

•	 Work on the domain and complete 
different types of tasks on it.

1.1Computing

c h a p t e r 

1.  What Is Computing?
What is computing? If you ask a dozen different computer scientists, you’ll likely 
get a dozen different answers. At its broadest level, computing is defined as anything 
that involves computers in some way, from designing the physical components that 
make up a single device to designing massive systems like the Internet that use 
computing principles.

In other words, computing is a massive field that touches almost every corner 
of modern society in some way. With such a massive domain… where do we start?

Introduction to Programming
Fortunately, effectively all of computing has a common foundation: programming. 
Programming is the act of creating instructions for a computer to carry out. Those 
instructions might be things like, “Add 5 and 3,” “Fetch Google.com,” or “Save my 
document.” Chains of these commands create the behaviors of every single comput-
ing device you see, from your thermostat to the space station. That’s what program-
ming is: writing the commands, called “code,” for a computer to perform.

Let’s take a simple example of this. You’re browsing the Internet and you see a 
link you’d like to follow—so, you click it. There are lines of code that translate that 
take that click and figure out what you clicked on based on where the mouse was 
located. There are lines of code that take the fact that you clicked a link and use it to 
send out a request to the Internet to retrieve the document. There are lines of code 
that monitor that retrieval, making sure that the document you requested exists and 
organizing it as it comes in. There are lines of code that take the document that you 
received and translate them into pixels on the screen so you can read it. Every stage 
of the process is governed by some code.

Figure 1.1.1
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Programming Is Everywhere
No matter where in computing you end up going, you’ll likely be dealing with 
programming in some way. Even if you’re not writing code yourself, you might be 
designing programs for someone else to code, or designing the hardware which will 
run code. Being able to program is like being able to speak a language. Just as you 
need to speak Spanish to communicate in Spain, you need to speak “code” to com-
municate in computing.

So, this Introduction to Computing aims to give you that language to communi-
cate in the computing world. Our goal is for you to learn not only how to write code, 
but also know how to communicate in a community that uses code as its language. 
Just like learning to speak a new language is more than just memorizing vocabulary 
words, so also working in computing is about more than just understanding how to 
write singular lines. It’s about understanding what writing code allows you to say 
and do.

Chapter Outline
This initial chapter is meant to provide you with the background necessary to start 
having these conversations about programming and computing. We’ll cover some of 
the basic vocabulary you need to start reading about programming, like output and 
compilation. We’ll discuss the general nature of different programming languages, 
their strengths and weaknesses. We’ll discuss different places where we might see 
a program’s output, especially the console or graphical interfaces. Finally, we’ll 
discuss what to expect in the rest of the course, as well as the language and domain 
in which you’ll be working.

2.  Programming Vocabulary
In order to talk about programming, there are some basic terms we need to know. 
We’ll cover a lot of vocabulary in context throughout this course as well, but there 
are a few terms we need to understand just to get started.

Programs and Code
We’ve already covered a couple of these. Code is commands given to a computer to 
order it to perform some task.

A line of code is generally a single command. Very often, we’ll talk in terms of 
individual lines of code and what each line does. In practice, we’ll find a single line 
could actually set off a sequence of lots of other commands, but generally a single 
line of code is the smallest unit we’re interested in dealing with at this stage.

A program, for our purposes, is a collection of lines of code that serves one 
or more overall functions. This could be anything from calculating the average of 
some numbers to running a self-driving automobile. Programs are often what we’re 
interested in building. A program is like a house and lines of code are like individual 
bricks. 

So, when we talk about programming or coding, we’re talking about writing 
lines of code to create programs that accomplish some tasks.

Input and Output
Nearly every program we write is also largely defined by its relationship with its 
input and its output. Input is anything that we put into a program for it to work 
on, and output is what the program gives us in return. Usually we’re not going to 
write programs that do the exact same thing every time they’re used—usually we’re 
going to write programs that process input in some way, providing output that 
corresponds to the input.

Line of code
A single instruction for the 
computer to perform.

Program
An independent collection of lines 
of code that serves one or more 
overall functions.

Input
Data that is fed into a program for 
it to operate upon.

Output
What the computer provides in 
return after running some lines of 
code.

4	 Chapter  1.1  Computing
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Input can come from a lot of places. Very often, we’re dealing with user input. 
To take a simple example, think of a basic word processor like Notepad or TextEdit. 
The user types keys, and in return, the program shows the letters that were pressed. 
The input is the keys that the user pressed; the output is the letters shown on the 
screen. Everything a user does on a computer screen is user input, and anything a 
computer screen shows is output.

Input doesn’t have to be from a human, though. When a web browser retrieves 
a website from the Internet, for example, the contents of the website would be the 
input, and the display of the site on the screen would be the output. When a word 
processor opens a file from your desktop, the file’s contents would be the input into 
the program, and the display of the document would be the output.

Output doesn’t just have to be to the screen, either. For example, when your 
phone receives an incoming call, the call information is the input into the phone, 
and the phone ringing is the output. Or, when you create a new document and press 
“Save” for the first time, the document contents that you’ve entered become the 
input, and the file that is saved is the output. 

At a general level, the input into some code is whatever exists before the code 
is run, and the output is whatever the code produces as a result of running. When we 
write code, we’ll even find that we’ll constantly be dealing with input and output 
between different portions of our own programs. The output of some code that we 
write becomes the input into some other code.

Compiling and Executing
Finally, the last two terms you need to know before we even get started are compile 
and run. Compiling and running are two things we do to code that we’ve written to 
see if it’s working the way we intend.

Compiling is like reading over code and looking for errors in the way we’ve 
written it. It’s kind of like the proofreading you would do on an essay. You can 
just look at the text and see if there are problems with it, like misspelled words or 
comma splices. Code has more strict syntax than an essay, though, so we rely on 
other computer programs, called compilers, to do this for us. They read in the code 
and let us know what problems they find. If there aren’t any problems, they produce 
programs that can be run.

Executing is then when the program is actually run. Just because some code 
compiled into a program doesn’t mean it will actually do what we want it to do—it 

Compile
To translate human-readable 
computer code into instructions 
the computer can execute. In the 
programming flow, this functions 
as a check on the code the user 
has written to make sure it makes 
sense to the computer.

Execution
Running some code and having it 
actually perform its operations.

Figure 1.1.2
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just means that what we told it to do makes sense. For example, imagine we wrote a 
program that would add two numbers, but instead we accidentally put a subtraction 
sign instead of an addition sign. The code still makes perfect sense during compila-
tion, it just does the wrong thing.

To use an analogy, imagine giving your friend directions for where to find a form 
in your office. You write the directions on a piece of paper and hand them to her. She 
reads over them and checks if they make sense. Perhaps she can’t make out some-
thing you wrote, or wants extra clarification on a particular step. That’s like compi-
lation—she checks to see if the directions make sense before trying to carry them 
out. Then, when she’s satisfied with them, she tries to actually carry them out. That 
doesn’t guarantee she’ll be successful, though: maybe the form isn’t where you said 
it would be, or maybe one of the steps that made sense on paper doesn’t make sense 
once she’s in the office. That’s like executing the code: actually carrying out the steps.

We should note that this description of compiling and executing is from the 
perspective of how you write code and build programs. In reality, compiling code 
actually serves a more significant set of purposes than this. Compiling translates 
the code that you write into the low-level types of commands that the computer 
actually understands. That level of detail is outside the scope of an Introduction to 
Computing class, however. For the programming you’ll actually do, this definition 
of compiling and executing should be fine.

You might notice that compiling seems potentially optional. After all, your 
friend could go and try to follow your directions without ever reading them first. 
Compilation is more important under the full definition of what it includes, but you’re 
right that it potentially could be skipped. We call languages that require compilation 
“static” or “compiled” languages, and languages that do not require compilation 
“dynamic” or “interpreted” languages. Nonetheless, even with dynamic languages, 
we often mimic the workflow of static languages. You likely won’t encounter the 
differences between the two until much later in your computing studies.

3.  Programming Languages
In order to write an essay, you must have a language in which to write it. You could 
write an essay in English, Japanese, Spanish, or Mandarin, but there must be a lan-
guage. The same is true for programming: you must have a language in which to 
write. Just as different written languages have different syntax, different vocabular-
ies, different structures, so also do different programming languages have different 
syntax, different vocabulary, and different structures.

There are dozens, even hundreds of programming languages out there, with 
many similarities and many differences. There are lots of ways to categorize pro-
gramming languages. For example, static languages require a compilation step, 
whereas dynamic languages do not. High-level languages involve a great deal of 
abstraction away from the details of the computer like memory, whereas low-level 
languages require programmers to do more of these things manually.

Why do so many languages exist? Different languages are good for different 
things. When you’re optimizing for performance, as you might with a visually 
complex video game or a highly complicated mathematical function, you might 
want to have more control over the details of how things run. If you’re more inter-
ested in being able to design rapidly, you might be interested in a language that 
doesn’t force you to think about those details.

But Why Do I Care?
But why am I telling you all this? You’re just about to set out on learning your first 
language, why do you need to know about all the others? The reason for this is that 
as you learn your first language, it’s useful to keep in mind where that language sits 
in the broad spectrum of computing: what it’s good for, when it’s bad.

6	 Chapter  1.1  Computing
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Most importantly, though, this is important because this is an Introduction 
to Computing, not simply an Introduction to Programming or an Introduction to 
Programming in a certain language. While we talk a lot about programming, it is 
because we must learn the language we use to discuss computing. However, simply 
knowing the language is only half the task. The other half is to understand the nature 
of computing as a whole and its relationship with programming. Toward that end, 
as we go forward, we will revisit some of the concepts that may differ between lan-
guages in order to paint a broader picture of computing as a whole than simply the 
language you choose to learn.

4.  Console vs. GUI
We’ve discussed how the programs we write can be largely characterized by their 
input and output. While programs can have many kinds of output, as we learn to 
write code, we’ll deal a lot with output we design specifically to help us understand 
how programs work. The easiest way to do this is by stripping out as much as pos-
sible so that we can focus entirely on what our programs are outputting.

In your experience using computers, you most often interact with Graphical 
User Interfaces (GUIs). These are systems that involve any kind of output beyond 
plaintext, and any kind of input beyond pure text entry. These are useful applica-
tions, but they are very complicated. As we learn to program, we’ll start with 
console-based programs, and work up to graphical programs.

The Console
There is a chance you might have used a console-like interface before. These are 
similar to command-line interfaces, like the Terminal on a Mac or the Command 
window on a PC. Generally, these are methods for input and output based exclu-
sively on plain text: no graphics, no layouts, no input mechanisms besides the key-
board. These are common starting points for learning to program, and most common 
languages can be written exclusively for the console.

For our purposes, this means that we will start by creating programs that only 
output text. We can use that text to evaluate how well the program is performing. For 
example, we know what output we would expect for some input into the program. 
When the program finishes running, we can print that output and see if it matches 

Console
An output medium for a program 
to show exclusively text-based 
output.

Figure 1.1.3
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our expectations. If it does not, we could print some text throughout the program to 
see where it diverges from our expectations.

In most languages, we can handle input in this realm as well. We can prescribe 
specific points where the user will input some text into our program. Again, this is 
all carried out in plain text. The programs that we create that run in this realm are 
very simple, and in this context, that’s a good thing: they help us understand exactly 
what is going on in our code.

GUIs
Of course, very few people use console interfaces for regular tasks nowadays. They 
have their niche uses, and they’re very efficient for experts, but for a wide variety of 
reasons graphical interfaces are more prevalent.

Graphical user interfaces, like the one in Figure 1.1.4, introduce a lot more 
complexity into programming. We have to deal with issues of screen layout, font, 
and color. We have to deal with changing between multiple screens or popping 
up different windows. We have to understand what portion of a program has been 
actively selected and where the input should go. There’s a lot to deal with.

Despite this, graphical user interfaces are built largely the same way that console 
programs are built: using lines of code that are executed in some order. Instead of 
just printing to the screen or taking in user input, these might do things like designate 
where in a form a certain textbox should be shown, or where a link should lead when 
clicked. The behavior of these programs is still similar to the console programs we’ll 
design, just far more complex because there are more things to deal with.

Graphical User Interface
An output medium that uses more 
than just text, like forms, buttons, 
tabs, and more. More programs 
are graphical user interfaces.

Figure 1.1.4

5.  What Is This Book?
With that foundation in computing in mind, let’s get started with our introduction 
to computing. There are lots of places online to learn the basics of computing and 
programming, but in this one, there are a few new and experimental approaches 
we’re trying. In order to fully appreciate this book, it’s useful to keep these unique 
approaches in mind.

Computing vs. Programming
Notice the title of this book is Introduction to Computing. You’ll find lots of courses 
out there that are introductions to programming, and programming is indeed the 

8	 Chapter  1.1  Computing
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foundation of computing. Learning to program is like learning to speak the language 
of the computer, and so it’s true, one of the learning objectives of this book is to 
learn to program.

However, learning to speak the language of the computer is only a small part 
of actual computing. Computing is about what you use that language to say. It’s 
oftentimes easy to focus too strongly on the programming and miss the underlying 
concepts and principles of computing as a whole. At the same time, programming 
isn’t useful just for the sake of programming: just as learning to program is learn-
ing to speak the computer’s language, it’s important to also understand what you’re 
using that language to make the computer do!

To try to address this, we’ve separated the material for this book into three 
general categories: Foundations, Language, and Domain. Foundations are the core 
principles of computing that transcend specific programming languages. Those 
Foundational principles are then implemented in specific programming Languages. 
You then use those Foundations in a given Language to achieve something within 
a Domain. 

That’s the structure we’ve used to guide the construction of this book: we’ll 
cover Foundational principles, implement them in a specific Language, and apply 
them to a particular Domain. The result of this will be that you’ll actually find your-
self going over certain ideas two or three times; this is by design! Just as study mate-
rial multiple times solidifies your understanding, covering some of the same ideas 
multiple times in different ways solidifies it as well. We encourage you to embrace 
this repetition and use it to enhance your computing education.

Code Segments
To demonstrate the Foundations and the Language and to apply them to the Domain, 
you’re going to see a lot of code segments. Within this book, you’ll typically see 
images like the one in Figure 1.1.5, where the code is provided on the left while the 
output of the code is provided on the right.

On the far left are line numbers. We use line numbers to describe code because 
it helps us talk about where certain things are happening. In the middle is the 
code itself; you’ll notice it’s colored and highlighted. This highlighting empha-
sizes certain types of code, like variables, function names, comments, and reserved 
words; we’ll cover all of these as we go forward. On the right is the output: when 
we run the code in the middle, we would receive the output on the right. If there is 
any user input, it’s highlighted in a different color as well, as shown in the output 
in Figure 1.1.6.

However, a huge part of learning to program is tinkering with code. We encour-
age you to open any of the code segments on your own and play with them. Modify 
them and see how the results change. Try to break them, and try to fix them. 
Programming is a highly procedural skill, and it’s only by doing it that you’ll ever 
really know it.

Figure 1.1.5
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6.  Course Outline
This Introduction to Computing is broken into five units. To get a picture of where 
the course as a whole is going, let’s run through them right now.

Unit 1: Basics
This is where you are now. The goal of Unit 1 is to take you from no prior back-
ground on computing to the knowledge necessary to begin learning. We’ve already 
started that! You now know some basic terminology, like input, output, code, com-
piling, console, and GUI.

In the remainder of this chapter, we’ll cover the basics of your programming 
language and how to get your own local programming setup ready to go. That way 
you’ll be able to start applying the things you learn on your own. This will depend 
heavily on the language you’re learning, but we’ll get to that later. We’ll also chat 
about the domain in which we’ll apply these principles.

In the next chapter, we’ll talk about the basic flow of programming: writing 
code, compiling it, executing it, and evaluating the results. This is when you’ll 
get your first taste of actually writing computer code yourself. The process we’ll 
describe here is fundamental to anything you ever do in computing.

In the third chapter of this unit, we’ll cover a process called debugging. This 
is basically resolving errors that arise in your code, either where it won’t work or 
where it works, but doesn’t do what you want it to do. In some ways, it’s hard to 
talk about debugging before you have lots of experience programming, but in others, 
you need to understand how to debug code to really make progress in learning in 
the first place.

At the conclusion of Unit 1, you’ll be prepared to start learning to develop real 
computer code.

Unit 2: Procedural Programming
Once we’ve covered the basics, it’s time to get started with programming. In the first 
unit, we’ll cover procedural programming. Procedural programming is the basic 
approach to code, writing sequences of commands that are run by the computer in 
a specified order.

We’ll start by talking about variables. Variables are how computer programs 
store information to be manipulated. We can use variables to store information from 
numbers to names to pictures to songs to pretty much anything else you can imagine. 
The key concept here will be variables and values. A variable is the name of some 
piece of information, while a value is the information itself. For example, “today’s 
date” would be a variable: it doesn’t matter what day it is, the question, “What is the 
value of today’s date?” makes sense. A value, in turn, would be “September 12th.” 
The value can change, but the variable name does not.

Then we’ll talk about operators, starting with logical operators. Logical 
operators are operators that check if certain things are true or false. For example, the 

Figure 1.1.6
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statement, “today is September 12th” is either true or false, and “is” is an operator 
that compares equality. We have logical operators to compare equality or check if 
certain values are greater or less than others. We also have logical operators that 
combine the results of other logical operators. For example, “today is September 
12th and it is raining” is a statement that is true or false: true if both the date and the 
weather are accurate, false if either is inaccurate.

Then, we’ll talk about mathematical operators. A lot of programming deals with 
numbers, so we have operators that deal with addition, subtraction, multiplication, 
division, and remainders. Depending on the language, there might be others as well. 
If you don’t care for math, though, don’t worry: you don’t need any math knowl-
edge beyond arithmetic to succeed in this material. To be honest, I never personally 
understood a lot of mathematics until I learned computing. Computing takes a lot of 
the confusing things in math and makes them clearer.

Unit 3: Control Structures
With variables and operators together, we can then move on to what are called 
control structures. Control structures are lines of code that control other lines of 
code. 

We’ll start conditionals. Conditionals are how we build more complex behavior 
in our programs. We can tell our programs to perform certain tasks only if certain 
conditions are met, like rejecting a calendar invite if the user is already busy at that 
time or closing a file if everything in it has been read. Notice the word “if” in both 
those examples: conditionals are also called “if statements.” A conditional runs 
certain lines of code if some condition is true (which is why our logical operators 
were so important!).

Conditionals then give way to even more complex control structures, called 
loops. Loops are how we tell our programs to repeat a certain set of commands a 
certain number of times or until a certain condition is true. We might use loops to 
change the names of every file in a folder, or to keep waiting for user input until they 
put something in, or to play a sound a certain number of times.

With loops, we’re echoing the idea that if you want to perform certain com-
mands multiple times, it’s better to just have the lines of code for those commands 
in one place and refer to them when you need them rather than writing them multiple 
times. That gets us to the idea of functions. Functions are like little programs with 
their own input and output that let us organize our code better. 

Finally, we’ll revisit the idea of debugging with more sophistication by talking 
about exceptions. As we develop more complex code, we’ll encounter instances 
where we might not want to fix every error—we might instead want to anticipate 
and account for them. We want to run certain lines of code if an error is encountered; 
error handling is using conditionals that monitor for errors.

This level of knowledge covers a huge portion of the foundation of computing. 
In fact, some of the most complex applications you’ve heard of, from space shuttles 
to early video games, are written without much more knowledge than we describe 
here.

Unit 4: Data Structures
Once we know how to create basic procedural programs, it’s time to learn about 
data structures. Data structures are different ways of organizing data for our pro-
grams to use. Procedural programming covers coding around basic things like 
letters and numbers, but with data structures we can start to code more complex 
behaviors.

We’ll start with something called strings. “String” is short for strings of char-
acters, where characters are things like letters, numbers, and punctuation marks. 
Strings are basically the programmatic term for text. Text is one of the main ways 
people communicate with programs, so a lot of what we do will be text-based.

	� �﻿   6.  Course Outline	 11
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Text is also the foundation for files. Files are how we store information between 
runs of our programs. Imagine you implement a word processor: the user creates 
some document, then saves it to a file. Then, later, they open it. File input and output 
radically improves the usefulness of the programs we can create, and it builds on our 
new understanding of manipulating text.

Just as strings are lists of characters in order, so also we can make lists of any 
other kind of data in our programs. We might store a list of files to modify, or a list 
of students for a gradebook, or a list of bookmarks for a web browser. Lists are so 
useful that there are several ways of implementing and using lists and list-like struc-
tures that we’ll cover.

When we deal with lists, we’re usually dealing with information in some kind of 
ordered format. There’s a first item, a second item, and so on. We can look up those 
items by searching by their number. But sometimes, we don’t care about order so 
much as we care about easily being able to look up data. For this, we’ll talk about 
data structures called hash tables or dictionaries. Using dictionaries, you can do 
things like look up a person’s profile just by using their name.

These are some of the data structures most languages will give us to use auto-
matically. However, the real power of data structures really arises when we start to 
create our own.

Unit 5: Objects and Algorithms
The material covered in the first four units of this material form the foundation of 
computing. Many classes would stop here. However, before we close, we want to 
preview the next two general concepts in computing: object-oriented programming 
and algorithms. If you go into areas like designing websites or creating mobile apps, 
you’ll see a lot of object-oriented programming. If you go into areas like computer 
graphics or computing theory, you’ll see a lot of algorithms. If you go into places 
like virtual reality or video game design, you’ll likely see a lot of both!

Object-oriented programming means the ability to create our own data struc-
tures. This approach allows us to create our own ways of organizing data, more 
closely matching both our understanding of the problem and the demands of the 
program we’re writing. So we’ll discuss the basics of object-oriented program-
ming and how it can be used to organize together natural ways of thinking about 
problems. For example, you and I have a very clear idea of the general concept of 
a chair that includes details like a chair will have some number of legs and some 
color. We can also imagine individual instances of that general concept of a chair, 
like the blue one with three legs at the counter or the brown one with four in the 
living room. That’s what object-oriented programming lets us do: create concepts, 
and then create instances of those concepts.

Then, we’ll briefly discuss algorithms. We’ll start by discussing the basic 
vocabulary of describing algorithms, especially their efficiency. When designing 
algorithms that will run on millions or billions of values, small differences in 
efficiency can lead to major effects. We’ll then discuss a common approach for 
designing algorithms, called recursion. Recursion is the name for functions that call 
themselves. Finally, we’ll conclude with two of the most valuable types of algo-
rithms, searching and sorting algorithms. Searching algorithms let us find a single 
item from a long list with greatest efficiency. Sorting algorithms put long lists of 
items in order according to a certain requirement, like alphabetizing a dictionary.

7.  Introduction to Python
This version of this material is provided in terms of the Python programming lan-
guage. Python is a high-level, dynamic programming language. The language was 
first created in the early 1990s, and reached a strong degree of popularity in the 
2000s. Today, it’s one of the more popular languages, especially among beginners.
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Python: A High-Level Language
First, we describe Python as a high-level language. High-level here doesn’t mean it’s 
more powerful or more advanced; instead, it means it abstracts pretty far away from 
the core processor and memory of the computer. We don’t have to worry about a lot 
of things like managing memory that we might need to think about in a lower-level 
language. That also means that the language is more portable: Python can run on PC, 
Mac, or Linux because there is a separate software to install to provide access to it. 
Lower-level languages are more likely to be tied only to certain operating systems.

The fact that Python is a high-level language means that we don’t have to spend 
time thinking about several things we don’t know about yet anyway, so while it’s 
an important detail to keep in mind, it doesn’t make much of a practical difference 
to us.

Python: An Interpreted Language
The fact that Python is dynamic or interpreted, however, is more significant. This 
means that Python will run our code line-by-line when we ask it to, without trying 
to compile it first. That opens up the possibility of using Python in a command-line 
interface, where we write and execute lines of code one at a time, more like a tradi-
tional calculator. The alternative to this is a scripting mode, where we write a bunch 
of code then run it all at once.

The main takeaway of Python being an interpreted language is that we might not 
be aware of errors until we try to actually execute those lines. Compiled languages 
will do some error checking before we try to execute them, but interpreted languages 
generally don’t. However, we can use some additional tools to duplicate some of 
those functions.

8.  Setting Up
As you go through this material, you’re going to want to try out the concepts 
yourself. That means that you’re going to need to set up an environment in which 
to program in Python on your own. If you’re using this book as part of a course, 
chances are that your course has its own preferred development environment, we 
recommend following that. If you’re reading this book independently, though—or if 
you want something beyond what your course recommends—here are four general 
options.

Files and the Command Line
The most “pure” way to do Python development is to simply write your code in text 
files and run it using the command line. This isn’t the recommended way for begin-
ners, but it also involves the least overhead, so we’ll cover it first.

To do this, the first thing we need to do is install Python. For a brief bit of 
history, Python was originally created in the early 1990s. The second version, 
Python 2, came out in 2000, and became extremely popular. The third version, 
Python 3, came out in 2008. Interestingly, Python 3 isn’t backwards compatible with 
Python 2. Code that worked in Python 2 won’t work with Python 3, and vice versa. 
So, it’s important to make sure we’re using the same version.

This book will use Python 3. Much of the content will work for Python 2 as 
well, but some won’t. To install Python 3, go to https://www.python.org/downloads/ 
and follow the directions for the latest version. If two versions are offered, make 
sure to choose the one that stars with the number 3 (e.g., Python 3.5.2), not 2 (e.g., 
Python 2.7.12).

After following those directions, you should be ready to get started. If you’re 
going to program using raw files and the command line, you can create your files 
with any text editor. Notepad on PC, TextEdit on Mac, and Emacs or Vim on Linux 
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are popular native options. However, other tools exist that provide more features, 
like Notepad++. I’d personally recommend using Notepad++ if you’re going to go 
this route.

Using the text editor, you can create code files the same way you’d create docu-
ments or pictures: write the code, and save it with the extension .py, like MyCode.py. 
Then, open the command line (on PC) or the terminal (on Mac or Linux). Navigate to 
the folder in which you saved the code, and execute the command python MyCode.
py. This will open and run MyCode.py, showing the output on the screen (or in a 
separate window if need be).

Using an IDE
IDE stands for Integrated Development Environment. It’s a custom piece of soft-
ware intended to make coding easier. Depending on the IDE, it might provide lots 
of features, but at the least it usually provides dedicated windows for writing code, 
managing files, and viewing output. It also usually allows you to run code just by 
pressing a single button.

There are lots of IDEs out there for Python: NetBeans, Spider, IDLE, IdleX, 
Komodo, LiClipse, and PyScripter to name a few. Personally, I prefer one called 
PyCharm, so we’ll provide brief instructions for PyCharm, but you’re welcome to 
use whichever you want.

To obtain PyCharm, visit https://www.jetbrains.com/pycharm-edu/. This 
actually provides the educational edition, which should be good for any novice 
programmers. It even has an integrated tutorial on Python, which should be a great 
complement to this material! 

Within PyCharm, even the Edu version, there are a lot of features. Here’s the 
extent of what you need to get started, though, based on the initial configuration of 
PyCharm Edu. If you open the tool, you’ll see:

•	 On the left, you can manage your files. Each file contains some code to run, 
just like a single document would contain a single essay. It’s possible for code 
in some files to refer to code in other files, but we won’t really need that for the 
concepts covered in this material.

•	 On the right, you write your code, one line at a time. The majority of what we 
do in the class will be here.

•	 Next to line 1, you’ll see a green triangle. Click this to run your code. This tells 
the computer to actually execute your code line by line.

•	 On the bottom, you’ll see the output of the last run of your code. For us, pretty 
much everything down here will come from text that we print out. This is the 
PyCharm equivalent of the console: it’s all text. If your code takes input from 
the user, you’ll enter it here as well.

PyCharm has a lot of other features, and we encourage you to explore them! 
However, the details above are all you need to know.

Web-Based IDEs
If you don’t want to bother setting up software, though, you’ll actually find there are 
websites that let you run code right in the browser! You wouldn’t want to develop 
a big program that way, but it’s totally fine to test out little segments of code, and 
likely covers the complexity of what we’ll cover in our material.

Some popular examples of this include:

•	 repl.it, a popular and full-featured browser-based environment. Note that its 
output syntax differs a little from what you’ll see in this book, but it shouldn’t 
be too hard to follow. Find it at www.repl.it.

•	 Holy Cross’s Online Python Interpreter, a simple and elegant pairing of a 
code window and an output window. Find it at mathcs.holycross.edu/~kwalsh/
python/.
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•	 Skulpt, an embeddable Python widget for websites that also has a version on its 
website. Find it at www.skulpt.org.

•	 Ideone, an online tool that supports dozens of languages. Find it at http://ideone.
com/.

•	 PythonTutor’s Visualize tool, an online tool that shows you the line-by-line 
execution of a Python program. Find it at http://www.pythontutor.com/visual-
ize.html, and make sure to select Python 3.

•	 CodeAcademy Labs, which shows the code and the output side-by-side. Find it 
at http://labs.codecademy.com/.

•	 CodingGround, an in-browser development environment visually similar to 
PyCharm and other downloadable IDEs. Find it at http://www.tutorialspoint.
com/execute_python_online.php.

Interactive Mode
As we’ll discuss in the next chapter, Python also has something I call “interactive 
mode.” In interactive mode, instead of writing blocks of code and running them all 
at once, you can put in one line at a time and see its result. It’s very much like a very 
powerful calculator.

Python by default installs a tool that takes care of interactive mode, called IDLE 
(“Integrated Development and Learning Environment”). If you run this, you’ll find 
you’re able to enter lines of code one-by-one. There are also other web-based tools 
with this type of interaction as well, including:

•	 The Python.org shell, a browser-based version of Python’s immediate mode. 
Find it at https://www.python.org/shell/.

•	 The IPython in-browser instance of PythonAnywhere. Find it at https://www.
pythonanywhere.com/try-ipython/.

•	 CodeAcademy Labs also provides an immediate mode. Find it at http://labs.
codecademy.com/.

Many introductory Python classes teach nearly the entire class in terms of inter-
active mode. In this class, however, we’ll focus on writing code and then running 
it. While interactive mode is a great way to explore, the vast majority of computer 
science is done with this iterative cycle between coding and running, so we’ll focus 
on that workflow.

9.  Introduction to Turtles
As mentioned previously, this book is structured into three interleaved areas: com-
puting Foundations, a particular programming Language, and applications to a 
specific Domain. In this version of this book, the Domain is turtles.

That probably sounds silly, so let me explain a bit further. Turtles is a popular 
Python graphics module for learning to program. The name “turtle” comes from 
the Logo programming language, created to teach programming all the way back in 
1966 by Wally Feurzig and Seymour Papert. The goal was to create an environment 
where (a) the meaning of the code was clear, and (b) learners would receive immedi-
ate feedback on exactly what happened. The result was turtles, a graphics module 
where learners would instruct virtual turtles to perform certain actions, like turning 
around and walking forward, drawing lines behind them.

Turtle Basics
Generally, to work with turtles, you’ll need to be using something on your computer 
to do your programming, not one of the browser-based options (although there are 
exceptions). The reason for this is that the window in which the turtles draw is 
always a separate window. So, you need an environment that can create a second 
window. For that reason, it’s also difficult to show these programs here in this book; 
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we need at least two large windows, and three when we start adding user input. 
Some of our turtles scripts are going to end up very long, too. So, for that reason, 
we are not going to show the code and output for the turtles lessons of this book. 
Instead, we’ll supply you the code separately, and you can run it yourself! So, before 
proceeding, get your programming environment ready.

Once we have that, we can start interacting with turtles with the first line of our 
program: import turtle. Then, we can start to give our turtle instructions in our code, 
as you’ll see in TurtleBasics.py. Note that you don’t need to worry how this works 
right now; the goal here is just to show you the way it looks.

In TurtleBasics.py, we have some lines of code, similar to the small code seg-
ments we saw earlier. Instead of printing stuff to the output on the right, though, 
these draw things in this separate window. Here, it draws a square. How does it draw 
a square? The turtle moves forward a distance of 100, then turns 90 degrees to the 
right. Then, it goes forward by 100 again, then turns 90 degrees to the right again. 
It repeats those two things one more time, then moves forward 100 one more time 
to complete the square.

Turtles and User Interface
Turtles are a great way to learn about a lot of programming concepts. Nearly 
everything we do can be expressed in terms of turtles. However, as a domain of 
application, turtles aren’t very authentic. So, in this book, we’re going to add an 
extra twist to it. While you’re welcome to use turtles to explore the concepts, our 
running example is going to be creating a program that lets a user control the turtles 
just by entering keywords and values.

For example, we can tell the turtle to move forward by 100 with the line of 
code turtle.forward(100). Our goal is to allow a user, not us programmers, 
to enter a simpler command to control the turtle. That’s going to be the domain for 
this version of this book: graphics and user interfaces, building a user interface to 
let users control a graphics module.
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Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to:

•	 Participate in the basic cycle of 
programming: the three-stage 
process;

•	 Differentiate between compiling 
and debugging and will gain a 
basic understanding of errors;

•	 Write basic lines of code in 
Python, and print statements, 
variables, and some basic 
methods;

•	 Write basic codes, run, and 
evaluate them within the turtle’s 
library.

1.2Programming

c h a p t e r 

1.  What Is Programming?
Programming is the foundation of computing. Programming is effectively being 
able to speak the computer’s language, to give it directions in a way that it under-
stands. Like any language, computers have vocabulary words and syntax that they 
understand. A lot of this material will cover exactly that: how to speak the com-
puter’s language.

The Programming Flow
Programming is more than just knowing the computer’s vocabulary, though. Pro-
gramming is also the process by which we create computer programs, just like 
writing is the process by which we create essays. It’s not a good idea to write an 
essay once and submit it without ever revising it, and similarly, we don’t write code 
and have it work perfectly the first time. Programming is an iterative process of 
writing code, attempting to run it, and evaluating the results.

This three-stage process might seem quite familiar to you. It’s how you write 
an essay, it’s how you paint a painting, it’s how you solve a math problem; it’s 
effectively how you do anything. You write the essay, you read over it or show it to 
the teacher, and you evaluate it. You paint a painting, you show it to an audience or 
a mentor, and you plan how to improve your next one. You try to solve a problem, 
you look up the answer in the book, and you evaluate whether your method matches. 
Coding is not that different from writing, painting, or solving math problems.

Chapter Preview
In this lesson, you’ll get your first experience writing actual code. Our hope is that 
you’ll see how easy it can be, but if it presents challenges, don’t be discouraged. 

Programming
writing code through an 
iterative process of writing lines 
of code, attempting to execute 
them, and evaluating the results.

Figure 1.2.1
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While computing is similar to writing essays, painting pictures, or solving problems 
in some ways, it also represents a very different way of thinking in others. It can take 
some time to get used to. Don’t fret! You’ll get there.

After your first experience writing code, we’ll move on to talking about running 
code and evaluating the results. We’ll also touch a little bit on how to fix things when 
your code generates errors or when it doesn’t perform as expected. It’s important to 
note that we don’t expect you to fully understand everything in this chapter before 
moving on—you’ll only truly understand this material once you get some practice 
writing, running, and evaluating code as you go through this book. However, to 
really be able to get into that process, it’s important to first have some exposure to 
what the process looks like. This chapter is meant to give you that foundation.

2.  Writing Code: Lines
In every language I’ve ever encountered, the most basic atom of development is the 
line of code. Lines of code are individual commands to give to the computer. Chains 
of these lines form complex behaviors or instructions for the computer to carry out.

Chaining Together Instructions
Imagine we are developing a program to print out the roster of students in this class. 
One command would instruct the program to grab a student’s profile from some file 
or database. Another would instruct the program to grab the student’s name from 
that profile. Another would instruct the program to print that name. Another would 
instruct the program to repeat those three commands for every student in the class. 
By chaining these instructions together, the computer can print out the entire class 
roster.

The Print Statement
There are two important things to note in this example. The first is that third 
command: print. As we get started with programming, the print() command is 
the first fundamental thing to understand. This is how you print output for you to see 
while running. In fact, the very first program that you’ll develop in the next lesson 
is just a print statement.

Work in Small Chunks
The second is that we want to develop programs in small chunks. You don’t write 
an entire essay from start to end without reading over the paragraphs as you write 
them. You likely wouldn’t paint a picture from start to finish without pausing to 
get feedback. So also, we want to develop our programs in small chunks, testing 
throughout to make sure we’re on the right track. In this example, we might first 
write a program that can print one single student’s name before adding the fourth 
command and printing all of them.

By writing commands in small chunks, we get constant feedback and can detect 
errors early on in development rather than waiting until they will be much more dif-
ficult to fix. We can print things out frequently to check on how things are working 
as well. You’ll try that out in the next lesson.

3.  Writing Code: Lines in Python 
Let’s get started with writing your first Python program. We’ve talked about how 
programs are made from lines of code, where each line is basically a command for 
the computer to do something. We’ve talked about how the programs we’re going 
to design initially will print to the console. On the left of Figure 1.2.2, we have our 
code, and on the right, we have our console. So, let’s write a program.
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Your First Program: Hello, World
In my code, shown in Figure 1.2.3, I’m going to write a simple command: 
print(“Hello, world”). This is a simple command that instructs the computer 
to print the text “Hello, world.” When I run this little one-line program, the console 
on the right prints the string of text I asked it to print. Voila! We have our first Python 
program. The program has one command, to print “Hello, world.” So, in our output, 
we see one action: the computer has printed “Hello, world.”

Note a couple things here in Figure 1.2.3. First, note that this line needs to be 
typed just as you see it here to print this text. The term “print” must be in all lower 
case letters, followed by an open parenthesis and ended with a close parenthesis: 
Python looks for that word specifically as a command it understands, and capital-
izing it prevents Python from recognizing it. Secondly, note that the text you want 
to print must generally be surrounded by quotation marks; we’ll discuss exceptions 
to that later. It can be single or double quotation marks, but it has to be surrounded 
by them: that’s how Python recognizes that this is some text to print instead of the 
name of a variable, which we’ll talk about next time.

Third, note that when we list function names like “print,” we usually follow 
them with parentheses, e.g. print(). This is to identify that the function is a func-
tion as opposed to a variable. This will make more sense later; for now, know that 
you aren’t going crazy by finding the open and close parentheses odd. You’ll get 
used to seeing that, and you’ll soon understand what they mean.

It’s also worth noting here that Python might be the simplest language to use 
to get to this point. Other languages require some additional lines of code or some 
additional setup to get to the point of just printing one line. Python makes this 
considerably easier. If in the future you switch to Java, C, or some other language, 
you’ll find that even simple print statements like this have to be contained within 
some broader code structure. That’s one of the things that makes Python a great 
language to learn first.

print(message)
takes as input a message as a 
string of characters and prints it to 
the console.

Print
output some text to the console.

Figure 1.2.2

Figure 1.2.3
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Printing Other Values
In addition to printing strings of characters like “Hello, world,” Python also lets us 
directly print a couple other things. First, we can print numbers like 5 or 5.1 directly 
using the print statement without quotation marks. Second, we can also print what 
are called “boolean” values. We’ll talk more about boolean values later, but for now, 
just know these are simply either True or False values. 

So, in the code shown in Figure 1.2.4, we’re printing all these types of values. 
We tell the computer to print our string of characters that reads “Hello, world,” then 
we tell it to print the numbers 5 and 5.1, then we tell it to print the values True and 
False. Then, when we look at our output, we see the computer executing these 
commands in this order: it prints “Hello, world,” then it prints 5, then it prints 5.1, 
then it prints True, then it prints False.

The Programming Flow
This lesson is about the overall programming flow from Figure 1.2.1, between 
writing code, running code, and evaluating the results; here we’ve focused on that 
initial process of writing code. Note, though, that we really can’t talk about writing 
code alone. In this lesson, we’ve covered all three phases. We’ve written lines of 
code, we’ve run the code, and we’ve evaluated the results. This tiny cycle in which 
we’ve engaged is the entire programming flow. Notice also that our prior instruc-
tions on coding in small chunks apply here, too: we initially just printed “Hello, 
world” to make sure we were printing things correctly. Then, we moved on to print-
ing other things as well. That way, if we were making mistakes in how we wrote our 
print statements, we would detect those mistakes early.

4.  Running Code: Compiling vs. Executing 
Now that we’ve written some code, it’s time to move on to trying to run it. Depend-
ing on the language and environment in which you’re working, running may involve 
multiple steps: compiling and executing. Earlier, we discussed the definitions of 
these terms; now, let’s go into a little more depth on what they mean in practice. 

To explore this, let’s use an analogy: imagine you’re trying to build a table. 
You have the parts and you have the instructions. In this analogy, you’re like the 
computer, the instructions are the code, and the parts are like the files or data the 
program would act on.

Compiling
What do you do first in this case? The first thing you might do is read over the 
instructions in their entirety. You might check to make sure you understand each 
individual instruction. You might make sure that all the parts the instructions refer-
ence are present. This is analogous to compiling a computer program: reading over 
the code and making sure everything makes sense. After all, if there are parts of the 
instructions or the code that don’t make sense, there’s no reason to proceed: we have 

boolean
a simple True or False value.

Figure 1.2.4

Figure 1.2.5
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to fix those problems first. If there is a problem in the fifth step or the fifth line of 
code, compiling prevents us from executing the first line until the fifth line is fixed.

Of course, when building our table, there’s no requirement that we read over the 
instructions first. We could just get started, and if there’s a problem, we’ll encounter 
it when it comes up. The same is true for programming, and this decision is made at 
the language level. Some languages, like Java or C, require compilation. These are 
often described as “static” or “compiled” programming languages. Other languages, 
like Python and JavaScript, do not require compilation; instead, they just run the 
lines one-by-one without checking them in advance. These are often described as 
“dynamic,” “interpreted,” or “scripting” languages. Even with these languages, 
some tools can simulate the “compilation” process, checking our code for errors 
before we actually execute it.

This description covers how compilation works in the practical sense. In the 
technical sense, compiling is the process of taking all the code that you’ve written 
and translating it down into the language the computer can understand. At their core, 
computers can only process  basic commands, and so our high-level coding must 
be translated down into basic commands before the computer can actually run our 
code. Understanding that idea is outside the scope of this Introduction; you’ll learn 
about that more if you decide to go into computing more deeply, especially if you 
decide to focus on developing operating systems like Windows, Mac OS, or Linux.

Executing
Whether you walked through this compilation step or not, we then move on to 
execution. If you’re building a table, this means actually starting to follow the 
instructions and build the table. For code, this means actually running the code and 
let it do whatever it was designed to do.

When we reach this step, a number of things can happen. First, even if we com-
piled first, we could still run into errors. In building the table, you could find that 
the screws won’t fit in the holes, or the legs can’t support the weight of the top. You 
couldn’t have discovered that during the compilation step. If you didn’t compile, 
this might also be where you discover issues like missing screws. These are errors: 
fundamental problems that prevent the code from running to completion.

Even if there are no errors, though, that does not guarantee we’ll get the results 
we want. Imagine, for example, that the instructions were incorrectly written for 
building a chair instead of a table. Checking the presence of all the parts and the 
logic of each instruction wouldn’t catch that. We don’t hit any problems while build-
ing it. However, at the end, we end up with something different than what we want. 
The code could run just fine, and still not do what we want it to do. 

Third, and ideally, the code could also run just fine, do exactly what we want, 
and generate the correct results. That’s the goal of the programming flow: to ulti-
mately create programs that do what we want them to do.

5.  Executing Code in Python 
The Python programming language is a dynamic, interpreted, scripting language. 
That means that the compilation step isn’t required. When I click to run some code, 
it just starts executing the lines one-by-one. If there is an error on the fifth line, it 
will execute the first four before telling me about the error. 

Encountering Errors
Let’s try an example of this. In Figure 1.2.6 are five lines of code. You might notice 
that the fifth line has an error: I’ve misspelled the word “print.” What happens when 
I run this code? The first four lines run just fine and print their output, but when 
the computer reaches line 5, it prints the error message shown on the right, under 

Compile
to translate human-readable 
computer code into instructions 
the computer can execute. In the 
programming flow, this functions 
as a check on the code the user 
has written to make sure it makes 
sense to the computer.

Execution
running some code and having it 
actually perform its operations.

Error
a problem that prevents code from 
continuing to run if not handled.
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‘Traceback’. This error message then gives us the information we need to track 
down and repair the problem we encountered.

“Compiling” Python
Although Python is a dynamic language that does not require a compilation step, 
some Python development environments supply that anyway. For example, Figure 
1.2.7 shows PyCharm, a popular Python Integrated Development Environment, or 
IDE. PyCharm simulates that compilation step before executing your code. It might 
do that all at once before you attempt execution, or it can even do it in-line as you 
type. This is almost like spell-check on a word processor: it can detect possible 
problems as you type. Note that this is different than the technical definition of 
compilation, but in terms of our programming workflow, it plays the same type of 
role, detecting errors before execution.

Figure 1.2.6

Figure 1.2.7
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The Python Interactive Mode
So far, and in the majority of the course, we discuss programming flow in terms of 
this cycle between writing, running, and evaluating code. In Python, this is called 
Scripting Mode. However, Python does have a mode that differs from this model, 
called Interactive Mode. In Interactive Mode, Python works a lot like a really 
sophisticated calculator: you type commands directly in and get results directly back 
out. If compiling was like reading over instructions in advance and executing was 
like running the instructions themselves, then Interactive Mode is like having your 
friend shout the instructions to you without ever showing them to you all together.

In Figure 1.2.8, we can see Interactive Mode in action. When the Interactive 
Mode window shows three arrows, it is waiting for us to enter a line of code. When 
we enter one and press enter, it immediately runs the line and shows us the results. 
This mode can be quite useful for getting quick feedback or quickly exploring 
whether certain methods will work. Any Python code can be entered line-by-line 
into Interactive Mode, and it will generate the same results that the code would have 
generated had it been run using Scripting Mode.

Some courses teach Python entirely using Interactive Mode. However, we will 
generally always use Scripting Mode instead. The immediate feedback of interactive 
mode is very useful in learning the basics of Python and coding, but the goal of this 
course is to give you an Introduction to Computing. The programming flow between 
writing code, running code, and evaluating the results is far more common in com-
puting than the more immediate type of interaction provided by Interactive Mode.

6.  Evaluating Results 
At the evaluation stage, we check the output of our execution and see if it matches 
our goals. We’ve discussed three possible outcomes when you reach that evaluation 
stage: errors, incorrect results, or correct results. If the results are correct, then we’re 
done and we can move forward to the next small chunk of development. So, let’s talk 
about the other two possibilities: errors and incorrect results.

Figure 1.2.8
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Errors
Errors occur when our code attempts to do something it isn’t allowed to do. The 
program is forced to just stop trying because it can’t move forward from that error. 
In our example of assembling furniture, this is like discovering that the screws are 
the wrong size or that you don’t have a hammer. Until the problem is solved, we 
can’t proceed.

But what do those errors look like in programming? There are lots of possible 
errors we could encounter, and we’ll cover what they might be as they come up in 
our future chapters. We might, for example, try to open a file that doesn’t exist. We 
might try to add things that can’t be added together, like blue plus cabbage. We 
might try to divide by zero. There are lots of things that can go wrong.

When an error occurs whether during compiling or running, we’re generally 
informed where in our code the error happened; for example, in Figure 1.2.6, the 
error message said “line 5.” So, we can go look at the code and try to figure out 
what’s going on. Oftentimes, that line of code itself doesn’t have the problem: 
instead, the problem occurred because something incorrect happened earlier. For 
example, if we tried to open a file that doesn’t exist, the line of code that tried to 
open the file might not be the problem; instead, the line of code with the problem 
might be the one that created the incorrect filename. The computer doesn’t know 
that’s a problem, though, until it tries to open that file. We’ll cover more about how 
to resolve this when we talk about debugging.

Incorrect Results
The other likely outcome of our code is for it to run successfully, but not do what we 
want it to do. In our furniture analogy, this is like following the steps only to discover 
that they built a chair instead of a table. The steps were fine, but they generated the 
wrong results.

In programming, this can take on lots of forms as well. For simple examples, 
maybe we add when we want to subtract. Maybe we sort files alphabetically when 
we want to sort them by creation date. There are lots of things we could do that 
would work perfectly fine, but wouldn’t generate the results we want. When that 
occurs, we have to try to trace through our program and discover where the incorrect 
steps are being taken. That introduces an interesting twist to the programming flow: 
we might write some new code whose goal is to help us understand the incorrect 
results, rather than just writing new code that tries to accomplish our original goal. 
We’ll talk more about that, too, when we discuss debugging.

7.  Evaluating Results in Python 
We’ve covered the programming flow between writing code, executing code, and 
evaluating code. We’ve talked about how we use this cycle to check for problems 
with our code; it might generate errors, or it might simply not perform how we want 
it to. We’ve discussed how the results of an evaluation feed into the next iteration. 
Now that we know all the principles, let’s go through an example of the entire cycle.

In this example, we’re going to see some code that is going to look unfamiliar. 
By the end of the book, you’ll understand what everything you see here means. For 
now, though, don’t worry too much about it; focus instead just on the nature of the 
output and revisions. The goal of this code will be to print the numbers 1 through 
9 in order.

Errors in Python
The code shown in Figure 1.2.9 is intended to print the numbers 1 through 9 in order. 
Right now, you don’t know what this code means, but don’t worry. All you need to 
know right now is that the goal is to print these numbers. So, we write the code on 
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Figure 1.2.9

the left in Figure 1.2.9, run it, and get the results on the right. What do we see? The 
computer spits out a syntax error. Specifically, it tells us that there is an error on line 
1, and the caret(^) notes that the problem is with the word “within.” The computer 
is telling us that there’s a problem on line 1 at the word “within.” This gives us the 
information we need to start resolving the problem. 

So, in this case, what is the problem? The problem is that “within” isn’t a word 
that Python recognizes. Instead, it recognizes the word “in.” So, we replace the word 
“within” with “in” and try again, as shown in Figure 1.2.10. Note how this brings to 
a close one cycle through the programming flow: we wrote code, we ran it and got 
some output, we evaluated that output, and we used that evaluation to inform more 
code revisions. Specifically, it was the output of one run that let us know to replace 
“within” with “in.”

Incorrect Output in Python
Based on that revision, we now run the code again, as shown in Figure 1.2.10. What 
do we find? Good news! This time, the code runs without generating an error. Bad 
news! Although it did not generate an error, it didn’t do what we wanted it to do. We 
wanted to print the numbers 1 through 9, but instead, it only printed the numbers 1 
through 8.

Correcting this kind of problem can be a bit tougher. When we hit an error, 
the computer told us specifically where the error occurred. It won’t always be as 
straightforward as the example in Figure 1.2.9, but it will generally at least give us 
a starting point. With incorrect output, though, we don’t have any such feedback 
because the computer doesn’t understand that the result is wrong. The computer 
doesn’t know our intentions, only the commands that we enter.

Fortunately in this case, the resolution is not difficult. When we look at the 
output of the code in Figure 1.2.10, we see that it is printing one fewer number than 
we want. We might not fully understand the first line of code, but we might be able to 
infer that range(1,9) in some way specifies the numbers 1 through 9. If the code 
isn’t printing enough numbers, maybe we need to increase the second number to 10. 

Figure 1.2.10
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We’ve evaluated the output and come to a conclusion on what revision is necessary, 
so we return to the first phase of the programming flow and modify our code.

When we make that revision and run that code, we see the correct results now 
show up in Figure 1.2.11. Fortunately, this was an easy example, but as our code 
gets more complex, tracking down the cause of the problems can get more difficult. 
So, in the next chapter, we’ll cover more advanced ways of uncovering these kinds 
of problems, called debugging.

8.  Programming with Turtles
So, we’ve seen a couple of really simple examples of Python programs. In these 
programs, a couple lines gave us a couple pieces of text output. With turtles, though, 
those exact same lines can give us more complex graphical output!

Drawing a Square
In TurtleBasics.py, you’ll find the code that we saw in our last chapter. At the time, 
we showed it just enough for you to see the kind of output to expect. Now, let’s look 
at it in more detail.

From the rest of this chapter, we know that the computer is going to run these 
lines one by one. What does each line do? The first line just tells the computer to 
go out and get some information it doesn’t have automatically. “turtle” is a module 
that it doesn’t see by default, so import turtle just tells it, “Hey, go grab the 
information on turtle.”

From there, the commands one by one tell the turtle to do different things. 
turtle.forward(100) tells it to move forward by 100. turtle.right(90) 
tells it to turn right by 90 degrees. By repeating these things four times, it draws a 
square.

Other Turtle Commands
There are a lot of things we can put here. The turtle module gives us lots of com-
mands to use. We’ll mostly use turtle.forward() and turtle.right() in our 
work, but you’re encouraged to play around with it! You can’t break anything; the 
worst that can happen is your code won’t run. So, play around with some of these 
commands, both now and in the future. In each case, replace x with the number 
you’d like.

•	 turtle.forward(x): Moves the turtle forward by x.
•	 turtle.backward(x): Moves the turtle backward by x.
•	 turtle.right(x): Turns the turtle to the right by x degrees.

Figure 1.2.11
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•	 turtle.left(x): Turns the turtle to the left by x degrees.
•	 turtle.setx(x): Sets the turtle’s horizontal coordinate.
•	 turtle.sety(x): Sets the turtle’s vertical coordinate.
•	 turtle.circle(x): Draws a circle with radius x.
•	 turtle.penup(): Lifts the pen so the turtle stops drawing whenever it moves.
•	 turtle.pendown(): Puts the pen back down so the turtle resumes drawing 

when it moves.
•	 turtle.pencolor(x): Changes the pen color to the color given by  
x (put it in quotes, like turtle.pencolor(“red”) and turtle.
pencolor(“brown”)).

Try just entering different combinations of these commands to see how the 
turtle reacts and what is drawn as a result!
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Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to:

•	 Understand the role and workflow 
of debugging and debug broken 
code;

•	 Understand the output that comes 
from the Python interpreter 
and how it can be used to aid 
debugging;

1.3Debugging

c h a p t e r 

1.  What Is Debugging?
Last chapter, we discussed a little bit about debugging. Debugging is trying to find 
why your code doesn’t behave the way you want it to. Maybe it’s generating some 
errors. Maybe it’s not generating errors, but the output isn’t what you want it to be. 
Either way, there’s a bug in the code: a bug is a mistake or problem that is causing 
the code to fail at its goal. Debugging is the process of finding and removing those 
bugs.

Debugging is one of the most fundamental parts of programming. In fact, the 
programming flow we’ve described could just as easily be called the debugging 
flow: it’s the flow you go through when you’ve written some code to check if it 
behaves as desired—or fix it if it doesn’t.

Just as we noted in the previous chapter, this content might seem a bit con-
fusing right now. Until you actually get really into writing code and debugging 
it, the debugging process might seem very abstract. At the same time, though, as 
soon as you start programming, you’ll likely start to encounter these issues. So, 
the goal of this chapter is to give you some initial background in debugging so 
that when you start to encounter bugs in your code, you know how to get started 
resolving them. Don’t feel like you need to pass a test on this chapter alone before 
moving on.

Debugging in the Programming Flow
In our short example in the previous chapter, we showed how we might go through 
a tiny debugging loop. We wrote some code, we ran that code, we saw a problem, 
and we fixed it. Sometimes, that’s exactly how this process will go: the output we 
get when we try to run our code will be all we need to find and fix the bug.

Debugging
Resolving problems in code, 
whether it be errors thrown 
in compilation or running or 
mismatches between the desired 
and observed output.

Figure 1.3.1
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However, that won’t always be the case. Many times the output will only be one 
piece of the puzzle in resolving the problems in our code. In this programming flow, 
don’t make the mistake of thinking that the code we write in that first phase will 
always be code that is important for our program to run. Oftentimes, we might write 
code in that stage whose only purpose is to help us debug a problem.

Debugging is kind of like doing research on our code. We need to find the infor-
mation necessary to build our understanding of what’s going wrong, and one way 
to do that is to get more information out of our code while running it—even if that 
information isn’t important to the code’s ultimate goal.

2.  Types of Errors 
The first thing to know about debugging is the kind of errors you’ll encounter. We’ve 
already talked about the three high-level things that can occur when running some 
code: it can perform correctly, it can perform incorrectly, or it can fail to perform at 
all because it generates an error. Let’s zoom in on that last one a bit and talk about 
the two types of errors: compilation errors and runtime errors.

Compilation Errors
As you might have guessed from our previous discussion of compiling vs. execut-
ing, compilation errors are those that occur when compiling our code in the first 
place. Not every language has compilation, and so, not every language has com-
pilation errors. Those languages that don’t require compilation, like Python and 
JavaScript, can sometimes have tools that simulate this process, letting us know 
before we execute our code if there are errors present within it.

For an error to be a compilation error, it has to be a problem inherent within 
the code. In other words, it has to be an error we can identify just by looking at the 
code, not an error that only exists in the context of how the code is run. For example, 
imagine some code whose job is to delete all the files in a folder. If you tried to run 
it on an empty folder, it might give an error, but that error wasn’t a problem with the 
code itself. It only arose when the code was executed. That would not be a compila-
tion error because there’s no error inherent in the code.

Errors can differ significantly from language to language, but there are some 
common ones. For compilation errors, some things you might often encounter are:

•	 Syntax errors. You’ve written code that just doesn’t make sense in the current 
programming language. This is akin to a grammatical error in an essay.

•	 Name errors. You’ve written code that tries to use something that doesn’t exist. 
Imagine, for example, I asked you, “Give her the book,” but never specified who 
“her” is. The command doesn’t make sense because I’m including a person that 
doesn’t exist.

•	 Type errors. You’ve written code that tries to do something that doesn’t make 
sense, like requesting the smell of True or the color of the number 5.

Note that depending on the language, some of these might turn up as runtime 
errors instead. For example, some languages don’t specify types within the code; for 
them, it isn’t until runtime that we realize we’re requesting the color of the number 
5, not the color of a car. Generally, when the error occurs is a lesser concern than 
why it occurs and how to solve it, so don’t worry too much about the difference 
between compile-time and runtime errors for now.

Runtime Errors
Runtime errors are errors that we encounter only when actually running the code. 
Languages that don’t have compilation will only have runtime errors, and even 
languages that do require compilation can have runtime errors because we can’t 
anticipate every error just by looking at the code.

Compilation Errors
Errors that occur during the 
computer’s read through of the 
code.

Runtime Errors
Errors that arise when trying to 
actually execute the code.
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Runtime errors most often occur because of something specific to the results 
that code generates when it runs. Some of the common runtime errors you will 
encounter are:

•	 Divide by zero errors. Your code contains a number being divided by another, 
but when those numbers actually have values, it turns out you’re trying to divide 
by zero!

•	 Null errors. Null errors are like name errors: you’re referring to something that 
doesn’t exist. Here, though, the variable would exist, but it wouldn’t have any 
value. Imagine your code said, “Grab the twelfth book on the shelf,” but the 
shelf only has six books. The request makes sense in the directions until you 
see the shelf: then you realize you’re trying to use something that doesn’t exist, 
but you only “see” that at runtime.

•	 Memory errors. Your computer can only remember a certain amount of stuff at 
a time. If you try to require it to remember more than that, you’ll hit a memory 
error.

For each of these, and for any other runtime error, it isn’t until the computer tries 
to actually execute these steps that it realizes there’s a problem. Runtime errors can 
be a much more difficult to resolve because instead of just finding the error in the 
code, you might also have to find the error in the data that the code is acting upon.

3.  Types of Errors in Python  
Now that you know the types of errors you might encounter, let’s show what they look 
like in Python. The main goal here is just to expose you to these errors so that when 
you encounter them later, you aren’t surprised. Every programmer encounters errors 
while programming, so learning to deal with them is a key part of learning to code.

NameError
A NameError occurs when you use a variable name that doesn’t exist. Don’t worry 
too much about what variables are right now, we’ll cover those very soon. For now, 
observe in Figure 1.3.2 that the letters a, b, c, and d were all used prior to the print 
statements on lines 5 and 6. The print statement on line 5, which only requires a, b, 
c, and d, runs just fine and outputs “10,” which is the sum of 1, 2, 3, and 4. The print 
statement on line 6 requires e, but e was not used previously. So, e is a name that 
Python does not recognize right now, and so it returns a NameError.

In the error message, note the information we’re given. We’re told what line to 
look at where the message says “line 6,” so we know to jump to line 6. The error 
message specifies “name ‘e’ is not defined,” which tells us exactly what variable it 
didn’t know.

Figure 1.3.2

TypeError
A TypeError is one type of our error where we’re trying to do something that 
doesn’t make sense. In the code shown in Figure 1.3.3, len() will give us the length 
of whatever is inside the parentheses. It makes sense to ask about the length of a text 
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message—it counts the number of characters, find that it’s 12, and prints out 12. It 
doesn’t make as much sense to ask about the length of a number, though.

As with the NameError, Python tells us where it encountered this error; here, 
it’s on line 2. Alongside the TypeError, we also see an additional message: “object 
of type ‘int’ has no len().” We’ll talk more about what this message means later. For 
now, though, if you correctly infer that “int” stands for “integer,” then this sentence 
suggests that there is no “length” of an “integer,” which gives us the information 
necessary to move forward a bit more.

AttributeError
An AttributeError is the other result when we try to do something in 
our code that doesn’t make sense. The difference between TypeError and 
AttributeError can be a little technical, so don’t worry about it for now—
we’ll cover it in unit 5. Instead, just understand that they’re two errors that cor-
respond to times when we try to do things that don’t make sense.

The code in Figure 1.3.4 creates two variables, and gives one the value “Hello, 
world” and the other the value 5. Don’t worry too much about what these lines 
mean; just know that lines 3 and 4 are trying to check whether those two variables 
end in the letter d. It makes sense to ask if a text message ends in the letter d. It 
doesn’t make sense to ask if a number ends in the letter d. So, Python prints True 
when asked if “Hello, world” ends in d, but prints an AttributeError when asked 
if 5 ends in d. Like the TypeError, the message is that an integer (an “int”) has no 
attribute “endswith,” meaning that we can’t use “endswith” on an integer.

Figure 1.3.4

Figure 1.3.3

SyntaxError
The last common type of error we’ll cover for now is the SyntaxError. 
A SyntaxError is kind of a catch-all error: it refers to lots of different things that 
can be done wrong, all based on violating Python’s internal grammar.

We can see an easy example of this just with the print statements we’ve been 
using so far. We’ve talked about how Python requires parentheses to surround 
whatever it’s supposed to print. So in Figure 1.3.5, when we write print(5), 
it prints the number 5. When we write print 5, it gives us a syntax error. This 
is actually an interesting example because old versions of Python (Python 2, 
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in particular) used the second type of print line, but newer versions use the first. 
You’ll still see lots of Python using the older version, so you might see lines like 
the second; in this material, however, we assume the newest version of Python.

SyntaxErrors can encompass a wide variety of different problems. They can 
also be somewhat hard to debug. SyntaxError means Python couldn’t even read 
what was written, so it can’t give the kinds of feedback that it gave on earlier errors.

4.  Basic Debugging
You’ve run your code, but it doesn’t behave as expected. Perhaps it generates an 
error, or perhaps it runs just fine but just doesn’t do what you want it to do. In an 
ideal case, the error message from the computer gives you all the information you 
need to quickly resolve the problem. In many cases, though, debugging is going to 
be a longer process. 

To help organize your debugging processes, remember that the goal of debug-
ging is to get the information necessary to locate and fix the error. Simply obtaining 
the right information is important. A common mistake novices make is that they try 
to just stare at the code until the problem becomes obvious; instead, if the problem 
isn’t immediately obvious, try instead to add code that will help make the problem 
clearer.

In this lesson, we’re going to discuss three general kinds of debugging: print 
debugging, scope debugging, and rubber duck debugging.

Print Debugging
The simplest and most common type of debugging you’ll use early on is called 
print debugging. Some people also refer to this as tracing. With print debugging, 
you simply instruct your program to print out its status throughout the run process. 
Looking through these print statements, you can often easily figure out where the 
program is differing from your expectations.

For example, imagine you’ve written a short, simple 10-line program, but 
you’re surprised that it never seems to actually finish running. It just runs and 
runs until you’re forced to stop it manually. There would be no error message, and 
potentially no output. By adding a print statement after each line, you can quickly 
see what line is taking a long time to run, or what line is executing over and over 
again.

Using print statements like this let you more easily visualize your program’s 
overall flow and identify when it differs from your expectations.

Scope Debugging
Imagine you’re writing a program to calculate the average grade in a class. You do 
this by looping through each student in the class one-by-one, adding their grade to 
one counter and counting the number of students with a different counter. Then, at 
the end, you divide the total score by the number of students.

However, you run this code, and it always says the average score is almost 0. 
You know that isn’t true because you know everyone in the class has a positive score. 

Print Debugging
A form of debugging where print 
statements are added throughout 
the code to check how the program 
is flowing.

Scope Debugging
A form of debugging where print 
statements are added to check 
the status of the variables in the 
program at different stages to see 
how they are changing.

Figure 1.3.5
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You use print debugging to track the flow of the program, and you find it is in fact 
looking at every student. So what do we do now?

Scope debugging is my term for debugging small sections of a program to make 
sure things have run correctly so far. We still do this with print statements; instead 
of just printing to trace the program’s flow, we print to examine whether a certain 
section of code behaved correctly. For example, we can check after each student 
whether the sum is what we expect it to be at that stage.

Rubber Duck Debugging
There’s an interesting phenomenon documented by nearly every programmer I’ve 
ever talked to. You’ll often have problems that you can’t solve using any of the tra-
ditional debugging methods. So, you go online and post on an Internet forum asking 
for help. There, you have to explain your problem in depth to get a useful answer. 
Very often, though, the simple act of explaining the problem in depth reveals the 
answer. By being forced to describe the problem from scratch to a new reader, we 
get an outside perspective and resolve the problem.

This is where rubber duck debugging comes in. Rubber duck debugging 
was introduced by the 1999 book The Pragmatic Programmer, and it refers to 
a programmer who carried around a rubber duck to which to explain problems. 
By explaining things to the duck, the programmer often found the solution. Now, 
it doesn’t have to be a duck; for me, it’s my cat. The point is: when faced with a 
hard-to-solve problem, try explaining it from scratch. You’ll often find the solution.

5.  Basic Debugging in Python
Let’s check out these debugging methods in action in Python. We’ll use the same 
examples shown previously, but we’ll specifically talk about how they work in 
Python. 

Print Debugging in Python
Let’s start with a short code segment. The goal of the code segment in Figure 1.3.6 
is to count from 1 to some number (in this case, 10), and then back from that number 
to 0. At the end, the code should print out the final number. Don’t worry too much 
about how this code works, though; you don’t need to understand this syntax to 
understand this example.

When we run this code, what happens? …nothing. Nothing happens, although 
we might notice our computer fan starts working overtime. In evaluating the results 
of running our code, we note it just runs and runs and runs, never outputting any-
thing. There is no error message, though. Because the code ends on a print state-
ment, we know that it’s never reaching that line because it never outputs anything. 
Where is it getting stuck, though? Right now, we don’t know.

The results of that execution tell us what to do next: go back to the first step of 
the programming flow and write some code that will help us narrow down where the 

Rubber Duck Debugging:
A form of debugging where the 
programmer explains the logic, 
goals, and operations to an 
inanimate listener to methodically 
step through the code.

Figure 1.3.6
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error is occurring. In Figure 1.3.7, we’ve put print statements throughout the code. 
That way, we can look at the output and see where the code is getting stuck. We see 
that it completes the first loop, starts the second loop, but never finishes the second 
loop. Now we know that the problem is on line 8 or 9. That’s far easier to solve than 
not knowing at all where the problem is.

Based on this, we might now notice that when we’re supposed to be counting 
down, we’re actually adding 1 instead of subtracting it. So, based on this new itera-
tion through the programming flow, we revise our code.

Now we’re successful. In Figure 1.3.8, we revised line 9 to subtract instead of 
add, ran the code again, and received the output we expected. At this point, we might 
go back and remove our print debugging statements; they were only there to help us 
resolve the problem, and now it’s resolved!

Figure 1.3.7

Figure 1.3.8

Scope Debugging in Python
To chat about scope debugging, let’s imagine a little program that calculates the 
average from a number of grades. The grades themselves are shown in the first line 
of Figure 1.3.9: 100, 95, 93, and so on. Don’t worry too much about how it works 
for now; we’ll talk about everything you see here later. For now, let’s focus just on 
what the bug might be.

In this case, we can manually calculate the average of those grades to know 
what output we expect: we add those numbers together on a calculator, divide 
by 12, and we find the average should be 89. However, right now the code in 
Figure 1.3.9 is outputting 6.833… so something isn’t working. How do we find out 
what’s wrong?

If we’re using print debugging, we might add print statements to make sure that 
the program is running through everything as expected, as seen in Figure 1.3.10. 
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For example, maybe the problem was that the program was only adding half the 
grades. So, we add these print statements to count how many grades it adds. We 
find, however, that the program correctly touches 12 different grades, so it isn’t 
skipping any.

Now we’re at a bit of a loss. The code is correctly touching each of the twelve 
grades, but the sum it’s computing is wrong. What’s going on here? To check this 
further, we want to narrow our scope a bit. We know the code is wrong because we 
checked that the average we calculated by hand differs from the average the code is 
calculating. Let’s now do that throughout the program as well. Instead of just com-
paring at the end, let’s compare every step along the way.

Figure 1.3.9

Figure 1.3.10

Figure 1.3.11
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In Figure 1.3.11, we’re printing the sum each time we add a new grade to it. So, 
we can calculate what sum should be at any time: 100 after one run, 195 after two, 
288 after three, and so on. Our first line appears correct, sum is 100 after one run. 
After two runs, though, it’s 95 instead of 195. After three, it’s 93 instead of 288. So, 
we’ve found the problem: sum isn’t being computed properly. The only place sum 
is being modified is line 7, so we know the problem is on line 7. Now we can look 
and see the issue (though we might not understand it until Unit 2): sum isn’t adding 
the next grade, it’s just being replaced by it!

We fix that in Figure 1.3.12 by adding grade to the current sum, then we run 
the code again, and voila. We receive the correct result, 89.0. Now we could remove 
our debugging statements, and we’d be left with code that accomplishes the goal we 
set out to accomplish.

Figure 1.3.12

6.  Advanced Debugging
Before we move on, there’s one last thing we should mention. The workflow we’ve 
discussed here for debugging is pretty universal, but the specific methods we’ve 
discussed are not. Adding print statements to trace your program’s execution pattern 
or check the status of its data while it runs are great ways to approach debugging 
as you first start to learn to program. By approaching things this way, debugging is 
another opportunity to learn to program in addition to a part of the programming 
process for you to learn.

However, as you get more advanced, you’ll find you may need to use more 
advanced debugging techniques. We don’t think you’ll reach that point in this class, 
but you will at some point in the future, and it would be undesirable to stick to these 
simple ways of debugging when you get to more complex problems. Our goal here 
is simply to alert you about the other options available so that when you need them, 
you know that they exist.

Advanced Debugging Methods
Some of the advanced tools available for debugging include:

•	 Step-by-step execution. Some development environments will allow you to 
run your code one line at a time. You can watch the lines execute, allowing you 
to visually see the status of the program’s execution. So, instead of checking 
to see if the previous loops were running correctly, you could simply watch. In 
our print debugging example, you would see the loop running over and over 
again.
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•	 Variable visualization. Some development environments will show you a 
simple chart of all the data stored in memory; this removes the need for you 
to print out variables manually and check their values. Combined with step-
by-step execution, this would allow you to watch how data is changed as the 
program runs, removing the need to print out the sum several times in the scope 
debugging example.

•	 In-line debugging. Some development environments are sophisticated enough 
to debug simple errors while you’re actually writing the code. PyCharm, for 
example, can underline your code live as you’re writing it to call out certain 
errors, as shown in Figure 1.3.13. This is especially true for syntax errors and 
name errors; rather than waiting for the code to run to get this kind of feedback, 
these environments will tell you immediately.

Figure 1.3.13
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41

Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to: 

•	 Understand procedural 
programming and how it 
differs from other paradigms of 
programming;

•	 Describe procedural programming 
in the context of Python, as well 
as read and write comments;

•	 Evaluate a turtles program from 
the perspective of procedural 
programming.

2.1Procedural Programming

c h a p t e r 

1.  What Is Procedural Programming?
It’s time we started learning to program in earnest. We’ve covered the high-level ideas 
of writing, running, and evaluating. We’ve talked about the difference between com-
piling and running. We’ve talked a bit about what lines of code are and how to debug 
them. From this point forward, we’re going to focus more on actually writing code.

We’ll start with what is known as procedural programming. What is procedural 
programming? At this point, procedural programming is just what you would call… 
programming. We defined programming as giving instructions to the computer to 
carry out in order. That’s what procedural programming is.

Procedural programming isn’t the only kind of programming there is, though. 
You’ll probably notice pretty quickly that a lot of programs you use on a daily 
basis couldn’t be written using only the concepts we’ll cover initially here. So, as 
we get started on procedural programming, let’s take a moment to briefly describe 
the other common programming paradigms so that you understand the limitations 
of our initial approach. The goal here is to help you see the difference between the 
programs we’re writing and the programs you use on a daily basis, as well as set 
the right expectations for where this material lies in the broader field of computing.

Functional Programming
Much of programming is based around the idea of “functions”, in some circum-
stances referred to as “methods.” A function is like a little machine: you drop 
something in, and it spits something out. We refer to what you put in as the “input” 
and what you get out as the “output”, and we usually say that the function or method 
“returns” the output. Functional programming is a fundamental part of most modern 
programming languages, and we’ll cover writing your own functions at the end of 
Unit 3. Throughout the unit, we’ll also make use of functions and methods to do 
various tasks like printing text or getting user input, so you should get familiar with 
the syntax of using functions.

Although syntax can generally vary wildly across multiple languages, most 
languages have very similar syntax for using functions. The function name is given, 
followed by a set of parentheses. Inside the parentheses are given any input, if 
needed. Whatever the function returns essentially replaces this text. For example, 
in Figure 2.1.1 we see a function named round, which we would assume would 
round the number given in the parentheses to the nearest integer. This line would 
thus effectively be replaced by the number 5. The function named round takes a real 
number as input, and returns the nearest integer as the output.

Object-Oriented Programming
Object-oriented programming will be covered in the fifth unit of this material. 
Using procedural programming, you can tell the computer to do lots of things. You 
can tell it to repeat certain instructions a number of times, like repeating an opera-
tion for every file in a folder. You can tell it to decide what to do based on some 
conditions, like only opening a file if it’s a specific file type. You can tie together 
commands to be called when needed. There are a lot of things you can do.

Function
A segment of code that 
performs a specific task, 
sometimes taking some input 
and sometimes returning some 
output.

Method
A function that is part of a class 
in object-oriented programming 
(but colloquially, often used 
interchangeably with function).

Object-Oriented 
Programming
A programming paradigm 
where programmers define 
custom data types that have 
custom methods embedded 
within them.

06_joy8227X_ch02.1_p039–050.indd   41 22/11/16   6:08 pm



However, you can’t teach the computer a concept it doesn’t understand—not 
very easily, anyway. Imagine we were creating a new gradebook application. We 
have a concept of student information, such as first name, last name, address, and 
class enrollments. For us, the idea of a student as a concept with lots of informa-
tion attached makes a lot of sense. In procedural programming, though, that doesn’t 
exist. Object-oriented programming is the paradigm that lets us create new concepts 
and teach them to the computer. What it means is that there is some code that isn’t 
executed in order when we execute our code; instead, it’s sort of “pre-loaded” and 
used as needed. That breaks the imperative nature of procedural programming.

Event-Driven Programming
We often describe programs that we write as people. You give your program instruc-
tions just as you give a person instructions. However, one kind of instruction we 
might give a person is: wait for me to come and ask you for help. Think of a recep-
tionist at an office. Much of their time may be spent waiting for a client or customer 
to come in. During that time, there are no commands to execute. This is similar to 
event-driven programming.

Most programs you use are like this, actually. When you’re sitting looking at 
an empty word processor or an Internet browser, the program is waiting for you to 
do something. When you do something, it triggers an event, and the event sets off 
some sequence of code. The code that the event sets off is just like the code we write 
procedurally, but it’s triggered by events rather than happening automatically when 
we run our program.

There are numerous other programming paradigms out there, but these three are 
arguably the three you’re most likely to think about as you go through this course’s 
material. We’ll cover object-oriented programming in Unit 5. Event-driven pro-
gramming, however, won’t be covered in this material because it only truly becomes 
valuable when you get to graphical user interfaces. The majority of what you learn 
here is still applicable to event-driven programming; the difference is just what 
causes the code to start running.

2.  Procedural Programming in Python
So far, everything we’ve done in Python has been pure procedural programming. 
That’s going to remain the case for a while. Our programs can be read as series of 
instructions executed in order to get the computer to do something. Let’s look at a 
few examples. The syntax you’ll see in these examples may not make sense right 
now, but don’t worry; we’ll cover it later. The purpose of this lesson is to preview 
some of the things you’ll see later in this unit so that when you see them, it’s a little 
more familiar.

Event-Driven Programming
A type of programming where 
the program generally awaits 
and reacts to events rather than 
running code linearly.

Figure 2.1.1
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Hello, World
The simplest example of procedural programming in Python in action is the first 
program we wrote: Hello, World. Hello, World was a single line, which represented 
a single command to the computer. When instructed, the computer executed that 
command. Note that the first line in Figure 2.1.2, preceded by a pound sign or hash 
mark, is designated a “comment”: the computer ignores this. We’ll talk more about 
these in a bit.

A series of these lines would execute that command a series of times. The 
computer executes each line one by one. If one line is repeated several times, it gets 
executed several times. In Figure 2.1.3, the line is to print a string of characters. We 
know it’s a string of characters because it’s enclosed in quotation marks: this is how 
we tell the computer to interpret it as text, not as computer code.

Figure 2.1.2

Figure 2.1.3

Data Types and Variables
Strings of characters aren’t the only things we print. Oftentimes, we’ll print integers, 
decimal numbers, and more complex information as well.

These are referred to as data types. Line 4 in Figure 2.1.4, for example, prints 
the integer 5. 5 is an integer, meaning that it is a whole number (no decimals). 5 
has a different data type from “Hello, world”; where “Hello, world” was a string of 
characters, 5 is an integer. 5.1 is another different kind of data type: it’s a decimal 

Figure 2.1.4
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number, which in Python we call a float (which stands for “floating point number”). 
And there are still more complex data types, like dates and times, that we can access.

Most often, we don’t print or use values like those directly. Typically, we store 
them in variables, and then use the variables in our programming. In Figure 2.1.5, 
instead of printing 5, 5.1, and today’s date directly, we first store them in the vari-
ables myInteger, myFloat, and myDate. Lines 3, 7, and 11 are assignment state-
ments: they assign values to those variables. In Python, this also creates the variable. 
Then, after that, we can use the variable and get its value when we need it.

Figure 2.1.5

Figure 2.1.6

Logical Operators
The usefulness of variables is in our ability to interact with and modify them, and 
one of the most fundamental ways we interact with and modify variables is with 
operators. There are two kinds of operators: logical operators and mathematical 
operators.

Within logical operators, there are two subtypes of operators: relational opera-
tors and boolean operators. Both are reserved words or symbols like > and or that 
perform some operation on variables. Relational operators check for the relationships 
between values, whether they’re contained in variables or not.

Lines 7 and 10 in Figure 2.1.8 contain the relational operator “is greater than.” 
This operator checks if the first number is greater than the second, and responds 
True if so. Otherwise, it responds False. Note it can work either on raw values 

The usefulness of this is that we can have a single variable name that changes its 
value over time. Imagine you have a variable representing a bank account balance, 
as in Figure 2.1.6. The value of the bank account balance changes over time, but the 
idea of having a balance is consistent. So, the variable name, myBalance, stays the 
same, but its value can change.
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(like 2 and 1 in line 7) or values stored in variables (like myNum2 and myNum1 in line 
10). Relational operators all check for the existence of certain relationships and say 
True if the relationship exists, or False if it doesn’t. The most common relational 
operators are “greater than”, “greater than or equal to”, “less than”, “less than or 
equal to”, and “is equal to.”

Boolean operators are operators that themselves only act on True and False 
values (called boolean values). For example, the code in Figure 2.1.9 slightly alters 
the previous block to check if myNum2 is between two other numbers; or, in other 
words, if it’s greater than one number and less than another number. That and is a 
boolean operator; it operates on the results of the two relational operators on either 
side.

Figure 2.1.8

Figure 2.1.9

Figure 2.1.7

Mathematical Operators
Like boolean operators, mathematical operators operate on variables. Specifically, 
they perform mathematical operations. We can add to our running example to show 
the role of mathematical operators:
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In Figure 2.1.10, instead of just comparing two numbers like 1 and 2, the code 
compares the sum of two numbers to a third number. 3 is not greater than 1 + 2 
(rather, it’s equal to it), and so False is printed both times. We can do similar opera-
tions for differences, products, quotients, and some more exotic operations as well.

Don’t worry if you’re fuzzy on everything we’ve talked about so far: you’re 
supposed to be! The goal here has been to preview what you’ll see later. The only 
thing you should come away with from this lesson is: there exist these things called 
variables and operators, and they interact together in useful ways.

3.  Comments and Documentation
Before we move on, there’s one more fundamental notion of programming that we 
should cover: comments and documentation. When we write code, we’re writing 
in the computer’s language; we’re translating our understanding of what we want it 
to do into the computer code. However, later on, someone else might need to come 
along and modify our code. Or, maybe in the future, we’ll return and need to remem-
ber how the code works. Because it’s written in the computer’s language, though, 
it isn’t easy for us to understand. We have to translate it back into human language.

That’s where commenting and documentation come in. Comments are a way of 
explaining how our code works alongside the code itself. A comment is essentially 
some text written into the code with a certain character or label instructing the com-
puter to ignore it. It’s only there for people to read, so the computer pays no atten-
tion to it. When another human comes along to modify the code, though, it gives 
an explanation they can understand more easily. These comments are like notes to 
future developers. Imagine you were showing your code to someone: what would 
you say about it beyond what is there in the code? That’s the kind of explanation 
you want to put in comments.

Comments
There are two general kinds of comments that we’ll see. First, in-line comments are 
comments that are placed right alongside the code that we write to explain what it 
does at a very detailed level. They might explain why we wrote some code a certain 
way, or translate some strange reasoning into a description more understandable by 
humans. They might contain notes or questions; it isn’t uncommon for programmers 
to include comments suggesting that certain code should be rewritten or has some 
known bugs.

The other kind of comment is larger. Before big segments of code, at the 
beginning of files, or before longer functions, we might also put larger explana-
tions for what the code that follows tries to do. This is especially useful in bigger 
programs, where it’s important to understand not just how individual lines of code 

Comments
Notes from the programmer 
supplied in-line alongside the 
code itself, designated in a way 
that prevents the computer from 
reading or attempting to execute 
them as code.

Documentation
Collected and set-aside descrip-
tions and instructions for a body 
of code.

Figure 2.1.10
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work, but how the entire program fits together. There even exist some languages for 
creating comments like these that can be automatically extracted into manuals and 
explanations.

Self-Documenting Code
Explaining with comments isn’t the only way to make your code more readable by 
people, though. Another idea in programming is called self-documenting code. We 
have enough leeway in how we write code that we can write it in ways that make it 
more clear what the code does. We can title our variables, our functions, our files 
any way we want. If you had a variable that represents how many words are in a file, 
why call it a when you can call it numWords? That’s the notion of self-documenting 
code: writing code that shows what it means.

4.  Comments and Documentation in Python
Before we move on to writing a lot of code, let’s quickly look at comments and 
documentation and how they work in Python.

In-Line Comments
In-line comments give line-by-line descriptions of what a segment of code does. For 
example, let’s go back to one of our earlier blocks of code.

In Figure 2.1.11, we have a conditional statement that tells the computer to 
change what it does based on the value of a certain variable. Again, don’t worry too 
much about understanding this code just yet. For now, let’s focus on the comments. 
Notice that the presence of commented lines doesn’t change the operation of the 
code. Anything that appears after the pound sign is ignored by the computer. By 
convention, in Python we usually put comments on their own lines before the code 
that they describe (as in lines 1, 4, and 7), but you can also put a comment after the 
end of a line of code (as in lines 3 and 6). Both are shown in Figure 2.1.11.

This way, we can explain to classmates, teammates, graders, and our own future 
selves how the code we write works. Writing comments is a habit to get into as early 
as possible; it will make both your and your colleagues’ lives much easier.

Self-Documenting Code
Code whose variables and 
functions are named in a way that 
makes it clear what their underly-
ing content and operations clear to 
the reader.

Figure 2.1.11

Code Block Comments
We use the exact same syntax in Python for explaining larger blocks of code as well. 
For example, let’s revisit the function we wrote in the last lesson.

Above the function in Figure 2.1.12, we’ve written three comments that explain 
what the function does. This way, a person coming along and viewing our code later 
could easily figure out what the code segment was intended to do and more easily 
revise it if necessary. In large programs with lots of functions, lots of different files, 
and lots of people working together, this kind of documentation is essential.
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Self-Documenting Code
Finally, wherever possible, we should write code that documents itself based on the 
names we choose for things. The function in Figure 2.1.12 is an example: we could 
have called the countdown function functionA, or foo or davidsFunction, but 
none of these suggests what the function does. countdown does suggest what the 
function does. An even better name might have been countUpToANumber. There’s 
no reason to be brief!

Figure 2.1.12

Figure 2.1.13

Figure 2.1.14

We can extend this to variables as well. For example, Figure 2.1.13 we’re using 
two variables, i and j, but i and j are simply generic labels. Just reading their 
names doesn’t explain what they mean at all. So, what do we want to do to make 
this code easy to read instead?

In Figure 2.1.14, we’ve changed i to numberOfTimesToPrint. That imme-
diately reveals that the variable determines how many times the message is printed. 
Someone reading our code could immediately understand what it does.

What about j though? We replaced it with just an underscore—how is that any 
clearer? This is an interesting Python convention; you don’t have to do this, but it’s 
generally accepted that if you have a variable that (a) must be created and (b) will 
never be used, you call it _. It’s a strange little Python thing. You can still name the 
variable anything you want, but calling it _ is a way of telling the reader, “Hey, you 
won’t see this variable used anywhere else.”
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As we explore writing code, notice how we use comments and self-documenting 
code throughout. This is our way of making this material easier for you to under-
stand, but it also sets a good example of how you should structure and write your 
own code.

5.  Procedural Programming and Turtles
We’ve seen code running simple sets of lines in order, like printing “Hello, world” 
several times. Now let’s see procedural code in action with the Python turtle graph-
ics library. Here, we’ll show two examples of how running a series of lines of code 
in order can lead to interesting results. For now, don’t worry too much about how 
these lines work; focus instead on how the lines run one-by-one, executing the given 
command.

Drawing a Hexagon
Let’s start with something very simple: drawing a hexagon. If you’re drawing a 
hexagon by hand, you do so by drawing six lines, each one at a certain angle from 
the previous one. That’s exactly how our turtle graphics library draws a hexagon as 
well, as shown in DrawingaHexagon.py.

One-by-one, the computer executes these lines of code. When it encounters the 
forward() function, it pushes the turtle forward by the given distance, drawing 
a line behind it. When it encounters the right() function, it rotates the turtle to 
the right by the given number of degrees. So, one command at a time, it draws the 
hexagon.

Drawing a Rainbow
Let’s draw something more complex. How about a rainbow? Or, at least, something 
that resembles a rainbow. With a relatively small number of lines of code, we can 
have Python use the turtle graphics library to draw a series of somewhat concentric 
circles of different colors, as shown in DrawingaRainbow.py.

Voila! One line of code at a time, we’ve drawn something resembling a rainbow. 
Each line of code served a purpose, whether it was changing the pen’s color, chang-
ing the pen’s size, or drawing a circle of a certain radius.

This was not the most efficient way to do this, however. As we go on in this 
material, we’ll revisit this and see how to draw this same figure in only 5 lines of 
code instead of 15. Note that aiming for as few lines of code as possible is not the 
goal, but we can certainly be more efficient than this.

turtle.forward(distance)
Takes as input distance as a float 
and moves the turtle forward the 
given distance.

turtle.right(angle)
Takes as input an angle as a float 
and rotates the turtle the given 
number of degrees.
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Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to:

•	 Define variables and values and 
describe the relationship between 
them;

•	 Declare and initialize variables in 
Python;

•	 Use variables to write dynamic 
turtle programs.

2.2Variables

c h a p t e r 

1.  What Is a Variable?
Variables are possibly the most fundamental element of programming. There 
really isn’t much you can do without variables. You’re probably familiar with vari-
ables from your days learning algebra. Variables aren’t really any different here. 
A variable is a name that holds a value. The name stays the same while the value 
can change. In algebra, that variable was often x.

To use that variable, you’d give it a value. The equation would then do some 
stuff to that value, and you’d get a result for y. If you didn’t enjoy math, though, 
don’t worry; to be honest, I never fully understood concepts like variables and func-
tions in math until I learned them in computer science. You don’t need to know any 
math to learn about computing. To me, writing code is more like writing an essay 
than doing a math problem.

Examples of Variables
A variable is a name that holds some value. It’s like a question with an answer. The 
question always exists, but the answer to the question might change. Let’s think of 
some examples:

•	 How many kids do I have? The variable would be the count of David’s kids, and 
the value would be one. That might change, though.

•	 What’s the current stock price of Microsoft? The variable would be Microsoft 
stock price, and the current value would be 53.74.

•	 What color shirt am I wearing? The variable would be David’s shirt color, and 
the current value would be blue.

Notice how in each case, there’s a variable and a value. The variable can take on 
different values. Notice also how unlike in math, variables don’t have to represent 
numbers. You could have variables that represent any number of things, such as 
names, colors, and dates.

Variables are the heart of programming. Nearly everything we do involves 
manipulating variables. We’ll use variables to represent the information in which 
we’re interested, like stock prices or usernames. We’ll use variables to control how 
our programs run, like counting repeated actions or checking if something has been 
found.

2.  Variables in Python
You can’t solve y = 2x + 1 unless I give you a value for x or y. Similarly, in order 
to actually use a variable in Python, it has to have a value. The value can change 
later, but it needs a value to start with. In Python, we create the variable by giving 
it a value.

In Figure 2.2.1, I’ve created a variable on line 2 called x by giving it the value 5. 
This is called an assignment statement: it assigns a value to a variable. When I print 
the variable on line 4, it shows me its value. That’s an important thing to remember: 
when we’re writing code, we deal with variables; when we run code, we see the 
values that go into these variables.

Variables
Alphanumeric (letters and 
numbers) identifiers that hold 
values, like integers, strings of 
characters, and dates.

Value
The content of some variable. 
The variable myAge might 
hold the value 29. The variable 
yourName might hold the value 
“Adelene”.

07_joy8227X_ch02.2_p051-066.indd   51 29/11/16   9:38 am



Different Kinds of Variables
Just as we talked about lots of different kinds of variables previously, so also Python 
variables can be used to store lots of different kinds of information. Let’s take a few 
examples:

Figure 2.2.1

Figure 2.2.2

In Figure 2.2.2 we see five variables, named aNumber, aDecimal, aString, 
aBoolean, and aDate. Remember, we could have named these anything we wanted, 
but we gave them names that made it clear what they are. Think of this like giving 
names to a pet: you could name a cat “Fido” and a dog “Tiger,” but you wouldn’t 
be surprised if these names confused people. The same way, you could name your 
variables phineas, celery,  and sovngarde,  but these names wouldn’t tell the 
reader anything about what they are.

Each of these five variables is assigned a value, but notice that the values them-
selves differ. aNumber is given an integer, aDecimal a number with a decimal, 
aString a message in text, aBoolean a true or false value, and aDate a represen-
tation of today’s date. We’ll talk more later about the kinds of data that variables can 
hold—for now, just notice how variables can holds lots of different kinds of data.

Python and Typing
There are a few things worth noting here before we move on to that, though. First, 
notice that if you didn’t see lines 1 through 12, you wouldn’t know what kind of data 
a certain variable held. If you just saw the line print(aNumber) without seeing 
the lines that preceded it, you wouldn’t know if aNumber was holding a number, a 
string of characters, a date, or something else entirely.

Second, notice that we didn’t actually name what kind of information the 
variables were holding. We didn’t say, “aNumber is going to hold an integer, 
and here’s what integer it’s going to hold.” The fact that aNumber is holding 
an integer was defined by the fact that we put an integer on the right side of the 
assignment statement. That means that we can change what kind of information it’s 
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holding just by changing what’s on the other side of the assignment statement, as 
seen in Figure 2.2.3.

Figure 2.2.4

Figure 2.2.3

The first time we print aVariable, it’s an integer. The second time, it’s a string 
of characters. The type of value it held changed because what we assigned to it 
changed. This is a unique feature of Python; in other languages, you have to choose 
what kind of data a variable will hold when you create the variable.

Naming Rules and Conventions
We don’t need to name variables with simple letters like x and y in math. In fact, 
we shouldn’t. When we’re choosing variable names, there are two things we need to 
keep in mind: a set of rules, and some conventions.

First, there are a few rules that cover what variable names we can use. They are: 

•	 Variable names can contain only letters, numbers, and underscores. No spaces 
or special characters.

•	 Variable names must start with letters. Underscores are technically allowed, too, 
but we usually only use these in certain situations.

•	 Variable names must not duplicate certain reserved words. We’ll talk about the 
reserved keywords later.

When you violate these rules, you’ll usually get a syntax error, as shown in 
Figure 2.2.4. Sometimes, though, the computer will give you a different error 
depending on how it interpreted your input.

However, beyond these rules, there are certain conventions we want to follow. 
The computer isn’t going to yell at us if we don’t follow these, but other people that 
have to work with our code might. The main convention is that our code should be 
self-documenting. What that means is we should be able to read the variable name 
and know what kind of data it’s holding. When I see variable names like a, foo, and 
qwerty in Figure 2.2.5, I don’t know what they’re holding. They might be integers, 
strings, times, or something else. Even if I knew the type was an integer, I wouldn’t 
know if they were storing an age, a shoe size, or a height in centimeters. So instead 
of using vague variable names like a, foo, and qwerty, we might use variable 
names like age, firstName, or catCount. Just by reading these variable names, 
we can infer age is storing someone’s age, firstName is storing a name like David 
or Lucy, and catCount is storing how many cats the person has.
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3.  Assigning Variables
We’ve said that variables are like questions, and values are like their answers. The 
variable sticks around while the value changes. There are a few principles that go 
along with this, though.

Give Values to Variables
The first is that we have to make sure that the order of that relationship is correct. 
We can’t give variables to values—we always give values to variables. We don’t 
want to ask, “What is 2?” and have the answer be, “It’s the number of cats I have!” 
Unless you’re on Jeopardy, that order doesn’t make sense. Instead, you want to ask, 
“How many cats do I have?” and get the answer, “2.” In nearly every programming 
language, we put the variable on the left, followed by the assignment operator, fol-
lowed by the value we’re assigning or giving to the variable. We’d say x equals 5, 
not 5 equals x. That says, “Give x the value 5.”

Assign Values before Using Variables
Second, to use variables, we generally must have already assigned them values. 
When we use a variable without actually giving it a value, we trigger some kind of 
name or null error, depending on the programming language. One way to break the 
rules of programming is by trying to use a variable that doesn’t have a value yet.

Imagine if I asked you, what color shoes am I wearing? The variable is shoe 
color, and you know the value would be some color, like black or brown. You don’t 
know the answer, though, so you can’t answer the question. Now, imagine if I were 
to tell you: “Please paint this wall the same color as my shoes.” If you don’t know 
what color my shoes are, you’re unable to complete my instruction. That’s what 
happens when we use a variable in programming that doesn’t have a value. The 
program can’t proceed, so it throws up an error and stops.

In a few places, we can use this to our advantage. Instead of just using the vari-
able as if it has a value, we can actually check: Does this variable have a value? The 
computer has a way of saying, “I don’t know!”, called “null.” Null is the value for any 
variable that hasn’t been assigned a value otherwise. So, if a variable’s value is “null,” 
then we know it hasn’t received a value, and we can check that before moving forward.

4.  Assigning Variables in Python 
Let’s see what happens when we make some of the mistakes we’ve talked about in 
Python. We’ve already talked about some of the naming requirements in Python: 
variables can only have letters, numbers, and underscores; they must start with 
letters; and they must not duplicate any keywords. Now we’ve also talked about two 
more rules: we must give values to variables, not give variables to values, and we 
may not use variables before they have been given values. Let’s tackle the first one.

Null
The “value” a variable has when it 
doesn’t actually have a value.

Figure 2.2.5

54	 Chapter  2.2  Variables

07_joy8227X_ch02.2_p051-066.indd   54 29/11/16   9:38 am



Giving Variables to Values (Wrong!)
In Figure 2.2.6, when we give myNumber the value 5 on line 1, things work fine! We 
print myNumber and see its current value, 5. When we try to give myNumber to 5 on 
line 3, however, we get an error. SyntaxError means that the way we’ve written a 
statement doesn’t work, and “can’t assign to literal” is the computer’s way of saying 
we can’t give a variable to a value.

Figure 2.2.8

Figure 2.2.7

Figure 2.2.6

We can see this happen in other ways, too. We also can’t assign values to one 
another, or set other kinds of values equal to variables. Whenever we have a value 
on the left side of the assignment statement, we’ll get that syntax error. Both lines 
1 and 2 of Figure 2.2.7 would generate a SyntaxError.

The other rule is that we can’t use variables before they’ve been assigned 
values. This is actually an easier problem to avoid in Python than in other lan-
guages because in Python, we create variables by assigning them values. In Figure 
2.2.6, we created the variable myNumber by setting it equal to the value 5. There’s 
no way to accidentally create a variable without assigning it a value. However, 
there are a couple of other ways we can accidentally try to use variables that don’t 
yet have values.

In Figure 2.2.8, we’ve skipped that initial assignment statement. We jump 
straight to trying to print a variable that doesn’t yet exist! When that happens, we 
get this NameError, and it tells us that the name myUnassignedNumber is not 
yet defined. So, if you accidentally use a variable name without creating it, you’ll 
see this error. This can happen for a number of reasons you might not expect. For 
example, if you misspell a variable name, you might encounter this error because 
the misspelled version hasn’t been created yet.
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In Figure 2.2.10, printing myNullVariable prints None, indicating it has 
no value. Printing myUndeclaredVariable throws an error, indicating that the 
variable name has never been created in the first place. Nonetheless, we cannot use 
myNullVariable for anything except comparisons to check if its value is None 
or not.

5.  Data Types
Every variable has a name, and it should have a value as well if we’re using it. 
There’s a third thing that variables have: types. Every variable has a type of infor-
mation it’s storing.

Basic Data Types
There are some basic types you’ll see very often:

•	 Integers, or whole numbers.
•	 Real numbers, or numbers that can have decimals.
•	 Characters, like individual letters and numbers.
•	 Strings, which are collections of characters in a row.
•	 Booleans, which just hold either true or false.

However, not all variables hold these basic types. Variables can hold nearly any 
type of information you can imagine. You could have variables that hold colors or 
pictures. Later in the class, we’ll even talk about how you can create your own data 
types. For example, you could create a Person type that includes a person’s name, 
birthday, and favorite food. We’ll talk about that later.

Importance of Data Types
The type of a variable is very important in a lot of ways. First, we generally have 
difficulty comparing variables of different types. For example, if the value of a is 
3 and the value of b is 5, then it’s easy for me to ask: what’s bigger, a or b (3 or 5)? 
But if a represents the number 3 while b represents the color Blue, it’s hard for me 
to ask that same question. What’s bigger, 3 or Blue?

The type of variable is also important because there might be certain operations 
that we can only do on certain types of data. For example, we can multiply inte-
gers easily. 3 × 5 = 15. How do you multiply strings of characters? What’s “Hello, 
world!” × “Hi, I’m David!”? The operations only make sense in the context of 
certain types of data.

Data Type
The type of content a variable 
holds, like an integer or a string of 
characters.

Figure 2.2.10

It’s also possible to manually create a variable without a value. We can do so by 
setting it equal to null manually, as seen in Figure 2.2.9. However, when we do this, 
it behaves a little differently from a variable we never initialized in the first place. 
None is a different value from just no value, as seen in Figure 2.2.10.

Figure 2.2.9
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6.  Data Types in Python 
In Python, a variable gets its type from the value which is assigned to it. If you assign 
an integer to a variable, the variable takes on the type integer. If you then assign a 
string of characters to it, the variable then takes on that new type. So, variables really 
just hold values, and the values themselves have types.

Common Types
In Python, there are a handful of common primitive data types we will deal with 
frequently. You’ve seen them before and they’re shown in Figure 2.2.11, but let’s 
list them more clearly:

•	 int, short for “integer.” An int can be nearly any positive or negative non-
decimal number. For example, 0, −1, and 911294 would all be type int.

•	 float, short for “floating point number.” Essentially, a float is a real number, 
including a decimal value. For example, 5.1, −6.9, and 0.00005 would be of 
type float. Note also we might have a float like 1.00 if we need extra preci-
sion or if we might need decimal values later.

•	 str, short for “string of characters.” Any textual message is a string. When 
we’re coding, strings are surrounded by quotation marks, either single or 
double. For example, “Hello, world” and ‘Hello, world’ are both strings. Note 
that a string could be holding all numbers, like “911294”—numbers are, after 
all, themselves characters.

•	 bool, short for “boolean.” A boolean holds either True or False, nothing else. 
We use bool a lot to perform logical statements in our programs. For example, 
the logic, “If this file exists, then open it” would be represented by something 
like if(fileExists), where fileExists is either True or False. 

Author’s Note
Note that if you learn a language 
like C or Java, the term ‘primitive’ 
for data types will take on a 
stricter meaning. In the technical 
sense, Python does not have 
‘primitive’ data types in the way 
these other languages do, but the 
data types we describe here are 
often used in the same way as 
primitives in other languages.

Figure 2.2.11

Most other languages have additional primitive data types. For example, most 
languages have a char data type that represents a single character, but in Python, 
this is instead simply represented by strings with only one character. Other lan-
guages also differentiate more ways of storing numbers based on how big the 
number will get, but Python takes care of this automatically.

Python supplies numerous other data types as well, like complex numbers, 
dates, lists, and many more. Some of these will be covered in this material, while 
you may look for others elsewhere. These four primitive types, however, will form 
a significant amount of the time we spend dealing with variables.

The type() Function
Python also gives us a handy function for checking a variable’s type: the type() 
function. When we enter type(variable), we’re given the type of the variable 

type(variable)
Takes as input some variable or 
value directly and returns the type 
of the variable such as an integer 
or string of characters.
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in parentheses. We’ll talk more about functions and how they’re used in the future, 
but for now, just pay attention to how we’re using it in Figure 2.2.12.

Figure 2.2.12

Figure 2.2.13

Before even thinking about the type() function, notice first that this is the 
first time we’ve used multiple functions at the same time! Remember, print() 
is a function, and we’re telling print() to print type(). How does this work? 
Python reads from left to right the way most of us do, so it first tries to execute the 
print() function. However, it discovers it can’t execute the print() function 
until it executes the type() function: it’s only after executing the type() func-
tion that it knows what to print. So, it executes the type() function, and whatever 
it outputs takes the place of the function itself. So, Python essentially translates 
print(type(myVariable)) on line 2 into print(“<class ‘int’>”). After 
that translation, print() can run.

Each time we assigned a different type of data to myVariable in Figure 
2.2.12, the type changed. <type ‘int’> means that initially, the variable was an 
integer. <type ‘str’> means that then, the variable was a string of characters. <type 
‘float’> is the computer’s way of saying the variable is a number with a decimal; 
float stands for “floating point.” <type ‘bool’> means that the variable is holding 
either True or False as its value.

Mixing Types
In the next chapter, we’ll discuss operators. Operators are the most basic way we act 
on variables. Some of the basic operators are mathematical, things like addition and 
subtraction, so let’s briefly talk about the interaction between types and operators. 
For example, what happens when we try to multiply two variables with different 
types? Figure 2.2.13 shows the answer.

For now, don’t worry too much about what these operators do; think of them 
just in the arithmetic sense, multiplying numbers together. As we can see, when we 
multiply two integers together on line 5, things work just fine. When we try to multi-
ply a float by a string on line 6, we receive a TypeError, which means that the data 
types we’re using aren’t compatible—at least, not with the operator we’re using.

Python has some unexpected operations, though. For example, we just saw that 
we can’t multiply a float by a string. That means we can’t multiply an integer by a 
string either, right?
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Check out Figure 2.2.14. Surprise! We can multiply a string by an integer, as 
seen on line 3. It duplicates the string that number of times given by the number. 
That’s one of the strange things Python does, and it’s a good example of how it 
can be good to just play around with the language and see what happens—frankly 
speaking, I only discovered that the multiplication operator works this way when 
trying to write some code that generates an error! 

We cannot, however, multiply a string by another string. In Figure 2.2.15, we 
receive another TypeError, indicating that we’re not using these data types in a 
compatible way.

Figure 2.2.14

Figure 2.2.15

Figure 2.2.16

7.  Type Conversions in Python
There will be times when we need to convert among the different data types. For 
example, imagine writing a program that reads some text in from a file. It encounters 
the text “5554321.” Should this be stored as the string of text “5554321” or as the 
number 5,554,321? Or, imagine it encounters the worse “False”. Should this remain 
as the text “False” or be stored as the boolean value False? The correct answer 
will depend on the purpose of the code, and so we need a way to convert between 
the different types.

Converting to Strings
Fortunately, Python provides a very simple way of accomplishing this. First, let’s 
look at converting numbers into strings. It will become more clear as we go on in the 
material why this is useful, but for now we’ll just focus on how to do it.

In Figure 2.2.16, we create a variable myNumber, and give it the value 5. 
Then we check the type of myNumber on line 2, and sure enough, it is an integer, 
or int. Then, we create a new variable myNumberAsString, and we assign it 
to str(myNumber) on line 3. str() is a function (we’ll talk about what func-
tions are later) that converts whatever is inside the parentheses into a string, if 
possible. So, when we check the type of myNumberAsString on line 4, it’s a 
string. Note that we could also use the str() function on a number by itself as 
well; for example, fiveAsString = str(5) would assign the string “5” to 
fiveAsString.

str(variable)
Takes as input some variable and 
returns a string representation of 
the variable’s value.
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The str() function will work to convert nearly any kind of variable to some 
kind of string. For example, the somewhat complex code shown in Figure 2.2.17 
grabs today’s date. The str() function used on line 3 returns a string representa-
tion of the date.

Figure 2.2.18

Figure 2.2.20

Figure 2.2.19

Figure 2.2.17

In practice, you may not always need to do this; when you put a non-string value 
into Python’s print() function, Python implicitly converts the value to a string. The 
code in Figure 2.2.18, for example, does the same thing as the code in Figure 2.2.17 
without the string conversion. Python implicitly calls str() on myDate in order to 
convert it something it can print.

However, there are instances where Python does not perform this conversion 
automatically. For example, we often want to provide labels behind what we’re 
printing; this makes our output much easier to read. Instead of just printing the date, 
we might want to print it with the label “Today’s date:”. However, that requires 
myDate to be a string before it’s printed in order to combine (or “concatenate”) it 
with the label. Otherwise, we receive a TypeError as shown in Figure 2.2.19.

There are several ways we can do this, all shown in Figure 2.2.20. In  lines 
2 through 4, we store the date in myDate, then convert the date to the string 
myDateAsString, and then print the label “Today’s date:” with myDateAsString. 
In lines 6 and 7, we skip storing myDate on its own and jump straight to passing 
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date.today() into str(). In lines 9 and 10, we skip storing myDateAs-
String explicitly, and instead do the string conversion inside the print statement 
with str(myDate). In line 12, we skip storing anything at all and just print 
str(date.today()) directly. In line 14, we skip the explicit conversion, and 
instead use a comma instead of a +, which tells the print() function to convert 
each comma-separated piece to a string automatically before trying to put them 
together. There are trade-offs here between clarity and efficiency or brevity. Learn-
ing which approach to take and when is one of the skills you’ll develop as you learn 
computing. Generally, we’ll use the approach shown on line 14.

Converting from Strings
Practically speaking, converting from strings to other values is just as easy. Just 
as there was a str() function for converting to a string, so also there are int(), 
bool(), and float() functions for converting to other data types.

date.today()
After importing date from 
datetime, returns a date object 
representing the current date.

int(variable)
Takes as input some variable and 
attempts to convert it to an integer, 
returning the integer if successful 
or raising a ValueError if 
unsuccessful.

bool(variable)
Takes as input some variable 
and attempts to convert it to a 
boolean, returning the boolean 
value if successful or raising a 
ValueError if unsuccessful.

float(variable)
Takes as input some variable and 
attempts to convert it to a float, 
returning the float if successful 
or raising a ValueError if 
unsuccessful.

Figure 2.2.21

Figure 2.2.22

User Input
Now is a good time to talk about getting input from the user in console applications. 
Imagine you’re writing a program that returns the square of a number that the user 
puts in. Without letting the user edit the code, how do you write this?

Here’s how. Python has a function called input(). Whatever text you supply 
to input is given to the user as a prompt. The program then waits for the user to type 
something into the console and press enter; whatever the user types is stored in the 

input(prompt)
Takes as input some string to use 
as a prompt for user input, and 
returns as a string the text the user 
enters.

In Figure 2.2.21, we have three strings, each of which hold text that could be 
easily converted to a different data type: an int on line 1, a float on line 5, and a 
bool on line 9. Each one is converted using the corresponding function, and we see 
that the type is what we want it to be.

There is an important note here compared to the string conversion function. 
Whereas almost anything can be converted to a string, not everything can be con-
verted to integers, booleans, and floats. For example, if a string holds an integer, we 
can still convert it to a float with float() because Python just assumes its decimal 
is .0, as seen in lines 1 through 3 of Figure 2.2.22. However, if a string holds a float, 
we cannot convert it to an int with int() because Python does not know what to do 
with the decimal, as seen in lines 5 through 7 of Figure 2.2.22. We receive a Val-
ueError when trying to perform type conversions that are not permitted.
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variable. In Figure 2.2.23, the user is asked to put in a number, and that number is 
then multiplied by itself and printed, right? Not exactly. As you can see, Python 
throws up an error. In the error, Python says that it can’t multiply by a string. Why 
does it say that if the user entered an integer?

By default, Python (as of version 3) takes anything the user enters as a string. 
After all, Python doesn’t know if the user is entering a string, an integer, a float, a 
boolean, or something else; all it knows is that the user’s input is text, and text can 
always be interpreted as a string. Many times, numbers should be interpreted as 
strings; imagine a PIN or a phone number. There’s little sense in interpreting those 
as 1,234 or 4,045,551,234.

Figure 2.2.25

Figure 2.2.23

You can see that behavior in Figure 2.2.24. We prompt the user for an integer, 
a float, and a string, and each time the user obeys the instruction; however, Python 
always interprets the user’s input as a string regardless. In order to use an integer as 
an integer or a float as a float, we must convert them to integers or floats.

So what do we do? Simple: we convert the user’s input to an integer. Before 
printing myUserInput * myUserInput on line 3 of Figure 2.2.25, we convert 
myUserInput to an integer on line 2. Then, we can be assured that we can success-
fully print its square… unless the user enters the wrong type of data. In that case, 
we would receive an error when we try to perform the conversion on line 2. Later in 
the material (in Chapter 3.5, on error handling), we’ll discuss how to deal with this. 
Specifically, we can anticipate those errors and handle them within the code instead 
of letting the code crash.

8.  Reserved Keywords in Python
In an earlier lesson, we noted that one of the rules around what names you can use 
for variables is that you can’t use some of the reserved keywords that Python has. 
What this means is that there are certain words to which Python attaches special 
meaning and uses to understand what you’re telling it to do. If you try to use these 
words to mean something different, Python gets confused.

This occurs in the real world in natural conversation, too. For example, if you 
named your dog “for” or “some,” people would get confused when you would say 
things like “Can you take for for a walk?” or “Can you pour some some food?”

Figure 2.2.24
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Python’s Reserved Words
For now, you don’t need to worry too much about what the reserved words do and 
why they’re reserved. Right now, let’s just list what these words are.

Figure 2.2.26

Figure 2.2.27

Fortunately, Python gives us a handy way of checking all its reserved keywords. 
Using the two lines of code in Figure 2.2.26, Python will print a list of them. Let’s 
break these keywords into a few categories so you know when to expect to learn 
more about each one:

•	 Importing Libraries. import, from. 
•	 Logical Operators. and, is, not, or, False, True, None. 
•	 Control Structures. as, break, continue, if, elif, else, for, in, while, 
pass, with. 

•	 Functions. def, return.
•	 Object-Oriented Programming Syntax. class.
•	 Error Handling. except, finally, raise, try.

The remaining words (assert, del, global, lambda, nonlocal, and 
yield) are outside the scope of our material. Note that if you see additional words 
like print and exec, it means you’re working in an older version of Python. Based 
on these words, you can get a nice feeling for what we’ll spend a lot of our time on: 
the remaining lessons in this unit are on logical and mathematical operators; Unit 3 
covers control structures, functions, and error handling; and Unit 5 covers object-
oriented programming. Units 2 and 3 are largely about learning to speak the com-
puter’s languages, which is why most of these keywords are covered in thess units.

Misusing Reserved Words
So what happens when we misuse reserved words? Let’s try using a reserved word 
as a variable name in Figure 2.2.27. When we use the reserved word “pass” as a 
variable name, we’re given a syntax error.

What about when we use it as a function name, as in Figure 2.2.28? Same 
thing—we’re given a syntax error. This isn’t how Python expects to see the reserved 
word except used. The same thing would happen if we used a reserved word as a 
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variable name. So, if you receive a syntax error, one thing to check is if you’re using 
a reserved word improperly. Most Python development environments will highlight 
reserved words, making it easier for you to tell.

What about functions?
But wait! Haven’t we seen other reserved words already? For example, wasn’t 
print a reserved word? Let’s find out!

Figure 2.2.29

Figure 2.2.28

On line 1 of Figure 2.2.29, Python lets us assign print a value just as if it’s 
a variable! print = 5 is a fine line as far as Python is concerned. However, when 
we’ve done that, it can no longer use print() as a function name on line 2. This 
is an early introduction to the idea of scope. If we have a function name, we can 
override it with a variable name; if we have a variable name, we can override it 
with a function name. What this means is that when we encounter strange errors 
like the one shown here, one thing we might want to check is if we’re using the 
same term as both a function and a variable. These aren’t reserved in the same way 
as the reserved keywords; instead, they just have a certain temporary meaning, but 
that temporary meaning can be changed. 

9.  Dot Notation in Python
When we move on to object-oriented programming, we’ll talk a lot about how a 
single variable can actually contain a lot of information. However, before we get 
to object-oriented programming, we’re going to see several instances of using 
variables that have more data contained within them. So, let’s look real quick at the 
syntax for that, called dot notation.

Variables with Lots of Data
We’ve talked in the past about another variable type, called a date. This goes 
beyond our primitive integers, floats, strings, and booleans. A date, however, is 
really three variables packaged into one with a special meaning: it’s a year, a month, 
and a day. That’s three integers. How can one variable hold three integers?

In Figure 2.2.30, we create a variable named myDate, and assign it to today’s 
date. The date contains three integers: a year, a month, and a day. We access each 
of those by using dot notation: we take the variable name (myDate), type a dot (.), 
then type the specific part of myDate we want to receive. In Figure 2.2.30, this gives 
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us the year on line 3, the month on line 4, and the day on line 5. We’re actually using 
dot notation in line 2 as well: date is a library (sort of a type of variable), today() 
is a method (sort of like a function) in that library, and the dot lets us access that 
part of the library.

What variables or functions are available is dependent on the particular variable 
you’re working with. For example, it makes sense to ask the year, month, and day 
of a date, but it doesn’t make sense to ask for the hour, minute, or second of a 
date. There is no answer to the question, “What’s the current time on May 15th?” 
However, if we had a time object, it would make sense to ask for the hours, minutes, 
and second, as shown in Figure 2.2.31.

Figure 2.2.31

Figure 2.2.30

As noted above, for now, don’t worry too much about this syntax. We won’t get 
into it in depth until we get to Unit 4. For now, it’s mostly just useful to be able to 
understand what you’re seeing when you see it.

10.  Variables with Turtles
Now let’s talk about using variables with our turtles. Throughout our material, we’re 
going to talk about programming with turtles in two contexts: first, with regard to 
just making fun things, and two, with regard to creating a more full-featured script 
that allows the user to dynamically control the turtle from the command line.

Simple Drawings with Variables
First, let’s draw something simple with variables alone in SimpleDrawingswith-
Variables.py. We’ll use two variables: length and turn angle. We’ll draw five lines, 
each of the given length, turning by the given angle between each turn. To do this, 
we’ll make use of two simple functions from the turtles library: forward() and 
right().

In this code, we draw a small arc with five segments, turning by 30 degrees 
(myTurnAngle) between each 50-pixel (myLength) line. Play around with this a 
little bit. Notice how just by changing the variables once, you can radically change 
the picture that is generated. Try to draw a five-pointed star—it’s possible to draw 
with five lines, rotating between a constant value each time.

User-Controlled Turtles: Getting Started
Let’s get started developing a script that will let the user running the script control 
the turtle. For right now, our goal is simple: let the user input a length and a degree 

turtle.forward(distance)
Takes as input distance as a float 
and moves the turtle forward the 
given distance.

turtle.right(angle)
Takes as input an angle as a float 
and rotates the turtle the given 
number of degrees.
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of rotation, then execute them. This will draw one line in the direction and length of 
the user’s choosing—a simple start, but an important one.

In this code in UserControlledTurtlesGettingStarted.py, the user inputs a turn 
angle and a length; these are then converted into integers, and Python then uses these 
numbers to draw a turtle’s movement.

It’s important to note the limitations here that we’ll be addressing as we go 
forward. First, the user is forced to enter only one angle and one length, in that order. 
They are not able to select their commands: we’ll add that functionality when we 
talk about conditionals. They are not able to input multiple commands: we’ll add 
that functionality when we talk about loops. If they enter bad input, the program 
crashes: we’ll fix that when we discuss exception handling.

Lines of Code: Efficiency and Readability
It is important to note that the number of lines of code is not a good measurement of 
code complexity or clarity. Packing everything into a tiny number of lines of code 
can make it hard to read, but extending it out into several lines can also make it hard 
to read. Keeping in mind that using as few lines of code as possible is not a good goal 
to have in software development, it is worth noting that figuring out ways to perform 
the same operations in fewer lines is a good way to test your coding knowledge. 
The code presented in LinesofCodeEfficiencyandReadability-1.py in six lines can 
be executed in two. Try to shorten the code to four lines, and then to two lines only.

We’ve supplied ways of shortening the code to both four lines and two lines in 
LinesofCodeEfficiencyandReadability-2lines.py. In one sense, the two-line code 
is harder to read: it packs a lot of information into repeatedly nested parentheses. 
In another sense, though, it’s more efficient. We’re not going to use the angle and 
length again later, so why bother saving them in variables? Take them, use them, 
and get rid of them.

In practice, the four-line version is probably the best way to do this, as shown 
in LinesofCodeEfficiencyandReadability-4lines.py. By storing the user’s input in 
variables, someone reading our code is more able to recognize what we’re saving 
and how we’re using it. However, it doesn’t really aid readability to save the con-
verted version in its own variable; any reader could immediately recognize that the 
conversion is merely to make the types match up.
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67

Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to: 

•	 Describe different types of 
logical operators and use them to 
implement different relationships 
among data;

•	 Write lines of code to chain 
different decisions together using 
Python logical operators;

•	 Use truth tables to simulate 
the results of different Boolean 
operators.

2.3Logical Operators

c h a p t e r 

1.  What Are Logical Operators?
To ask what logical operators are, we must first ask: what are operators? Opera-
tors are the simplest way to act on data, typically on simple data types like integers, 
strings, and floats. In the next couple chapters, we’ll discuss two different types of 
operators: logical operators in this chapter, and mathematical operators in the next. 
But first, we’ll discuss the types of operators in general; then, we’ll get in more depth 
with logical operators and how they’re used in your language.

Mathematical Operators
Mathematical operators are the more familiar but less important category of 
operators. Most languages have at least five mathematical operators: addition, 
subtraction, multiplication, division, and modulus. The first four of these are the 
same operations you’ve been discussing for years, since early arithmetic. The fifth, 
modulus, is the remainder function, the remainder when one integer is divided by 
another. Some languages might have dedicated operators for exponents or other 
common operations, while others might use functions for those tasks.

Most often, these mathematical operators will operate on numbers like integers 
and floats. Rarely, though, we’ll find we can use operators on other data types as 
well. For example, in some programming languages (like Python), if you multiply 
a string by an integer, the string is duplicated a number of times. In other languages 
(like Java), adding two strings together might “concatenate” them, or put them 
together; but we’ll cover that later.

Logical Operators
Logical operators are likely less familiar, but they play a bigger role in computing. 
Some of these are used for comparisons, like checking if two values are equal to 
one another or if one is greater than the other. Others are used for chaining together 
logical decisions like these, checking if multiple conditions are true or if one of 
many conditions is true.

Logical operators are incredibly powerful in computing. They are how we 
check to see if complex sets of conditions are met, and they are fundamental to how 
we control the execution of our programs. Every condition and loop that we cover 
in the next unit is governed in some way by logical operators.

We’ll start with logical operators given their relatively high importance, then 
come back to mathematical operators in the next chapter.

2.  Relational Operators
The ultimate goal of all logical operators is to assess whether certain statements are 
true or false. They only have two possible outcomes, true or false. A lot of compli-
cated reasoning can go into that, though. The good thing is that we actually think in 
terms of logical operators every day, so we can pretty quickly jump to understanding 
these operators in our code.

Operators
Specific, simple functions that 
act on primitive data types, like 
integers and strings.

Mathematical Operators
Operators that perform math-
ematical functions, like adding 
numbers together or assigning 
values to variables.

Logical Operators
Operators that perform logical 
operations, such as comparing 
relative values, checking 
equality, checking set member-
ship, or evaluating combina-
tions of other logical operators.
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Generally, there are two kinds of logical operators: relational operators and 
boolean operators. Relational operators check if things are true in the world or in 
our data. Boolean operators typically check the combination of multiple relational 
operators. Don’t let the complex terminology here scare you: you’ll see soon this 
reasoning is very natural, and in fact, you engage in it every day.

Relational operators check the relationships between multiple things. Let’s first 
take some examples from the real world, and then look at some examples more core 
to programming.

Numeric Comparisons
Let’s say you go to the kitchen for a snack. You open the refrigerator to get some 
grapes, but you find that there aren’t any. So, you add grapes to your grocery list. 
That was a relational operator: you compared the number of grapes to some number 
in your head, in this case 0, and reasoned that it is true that the number of grapes in 
the refrigerator equals zero. That’s the relational operator between a variable, the 
number of grapes, and some number you have in mind.

So instead of grapes, you decide you’ll have a piece of fruit. There are apples 
and oranges, and there are more oranges than apples, so you decide to have an 
orange. That’s another relational operator: you compared the number of apples to 
the number of oranges, decided it was false that there were more apples, and so you 
decided to have an orange. Notice in both these cases, logical operators are very 
closely entwined with a conditional statement: you compare something, generate a 
conclusion, and decide to take action based on the conclusion. The comparison is 
the logical operator, while the decision is the conditional.

Non-Numeric Equality Comparisons
Relational operators aren’t just numeric comparisons, though. We can compare 
non-numeric equality as well. You grab your orange and sit down in front of the TV. 
You check the listings to see what’s on, and you see your favorite show is on two 
different channels. You check what episodes are playing, and see both channels are 
playing the same episode, so you just choose which one to select randomly. That’s a 
non-numeric equality comparison: you judged that it was true that the two episodes 
were “equal”, so you chose randomly.

Set Operators
Right as you’re about to sit down, though, you realize you didn’t grab a drink. You 
go back to the fridge and see water, apple juice, and milk. You have a dairy allergy, 
though, so you select between water and apple juice. That’s another relational opera-
tor: you checked to see if each beverage was in the set of things to which you’re 
allergic, and chose one that gave the answer “false.”

That’s a rundown of the relational operators we’ll use in a nutshell: we might do 
numeric comparisons, check for non-numeric equality, or we might check if some-
thing is a member of a certain type or list of things. Pay attention in your everyday 
life—you’ll likely notice a huge amount of your reasoning uses these operators. 
Note that depending on the languages, some of these might not be implemented as 
operators; they might be implemented as methods or functions. That just means that 
performing these operations is a little more complex.

3.  Relational Operators in Python
Let’s see how we execute these operators in Python. We’ll take some simple syn-
tactical examples, then build toward a larger example of these principles in action.

Relational Operators
Operators that check the relation-
ships between multiple variables, 
such as checking if they are equal 
or if one is greater than another.
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Numeric Equality Comparisons
Our numeric comparison statements are very simple. If we want to compare whether 
two numbers are equal, we just write the numbers (or the variables holding the 
numbers) with two equals signs between them.

Figure 2.3.1

Figure 2.3.2

Numeric Value Comparisons
In addition to checking if numbers are equal, we can check if they’re greater than 
or less than one another. We do this the way you might expect, by simply using the 
greater-than and less-than characters

In Figure 2.3.3, we see the same principles applied with greater-than and less-
than. We can also use greater-than-or-equal-to and less-than-or-equal-to by adding 
an equals sign after the greater or less than sign, as seen on lines 4 and 12. 

Non-Numeric Equality Comparisons
With numbers, it’s easy to look at relative value. It makes sense to ask, “Is 3 greater 
than 5?” It doesn’t make sense to ask, “Is blue greater than red?” With colors, 
names, and lots of other data types, there are no relative values. However, equality 
still exists in these areas. It doesn’t make sense to ask, “Is blue greater than red?”, 

In Figure 2.3.1, we’re printing the results of the numeric comparison so that we 
can see what’s happening. The first line asks, “5 equals 3?”, to which the computer 
replies, False!  The second asks, “5 equals 5?”, to which the computer replies, 
True! The last two statements repeat this with the numbers assigned to variables 
instead.

You might be wondering: why two equals signs instead of one? The middle 
three lines of Figure 2.3.1 show the difference. When we use only one equals sign, 
Python assigns the value to the variable. Line 3 doesn’t check if a equals 5, it sets a 
equal to 5. If we tried to just print a = 5, we’d get an error. A single equal sign sets 
two things equal to each other (if possible), while two equal signs checks if they’re 
already equal to each other.

Figure 2.3.2 shows what happens if you use the wrong operator here. When we 
use the double-equals on line 2, it correctly prints True. When we use the single-
equals on line 3, we receive a TypeError.
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but it does make sense to ask, “Is blue the same as red?” In Python, we can often 
use the double-equals to mean equality among non-numeric data types. Most often, 
this will be strings.

Figure 2.3.3

Figure 2.3.4

Figure 2.3.5

In Figure 2.3.4, we create four strings, a, b, c, and d. We give the same value 
to a and b, and sure enough, the == operator on line 5 shows that they’re equal. It 
correctly notes that a is not equal to c on line 6, however. Line 7 is also the first 
look we have at string concatenation, or putting two strings together. c + d squeezes 
“Hello,” and “world” into one string, which ends up equal to a.

Whether or not the == operator works this way with the data types you’re using 
is dependent on a number of factors. Before relying on it, you should check to see 
if it operates as expected. The general point here is that for almost any data type, it 
does make sense to check for equality.

It’s worth noting that the greater-than and less-than operators do work for 
strings as well, and they operate based on sorting the strings alphabetically. Strings 
that are earlier alphabetically are treated as “less” than strings that are later alpha-
betically, as shown in line 5 through 7 of Figure 2.3.5. However, note that (a) this 
method treats capital and lower-case letters separately, meaning that capital Z would 
be sorted as “less” than lower-case a, and (b) I don’t think I’ve ever had an occasion 
to use this method except when writing a string sorting method.
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Set Operators
Finally, the other major Python operator we’ll use very often is the in operator. The 
in operator checks to see if something is contained within a list of things. The in 
operator is somewhat unique to Python; most languages (like Java and C++) supply 
the same ability, but with a function or method rather than simply with an operator. 
Python just makes it a little easier.

Figure 2.3.6

Figure 2.3.7

Operators in Action
Let’s look at a longer example of these operators in action. Imagine we’re writing 
a program that validates a credit card scan. It would need to go through a number 
of different checks: it must check that the balance is sufficient to cover the total, 
it must check that the cardholder is the person trying to make the purchase, and it 
must check that the transaction is occurring at a trusted vendor. What would that 
look like in code?

For example, we can use the in operator to see if there’s a certain message 
contained within a longer message. In Figure 2.3.6, the first two print statements 
say True because “H” and “lo, w” are character sequences within myString. “oll” 
is “False” because it does not occur within myString. This is effectively like 
saying, “‘oll’ is in myString?” and having the computer reply, False!

We haven’t talked much yet about lists, but in is also very useful in lists. Line 
1 in Figure 2.3.7 defines a list; we’ll talk more about lists in Unit 3, but for now, just 
know that this is a list with three strings: “and,” “or,” and “not.” Line 2 asks, “‘and’ 
is in that list?”, to which the computer replies, True! Line 3 asks, “‘else’ is in that 
list?”, to which the computer replies, False!

Figure 2.3.8
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Figure 2.3.8 is the longest and most complex chunk of code you’ve seen so 
far, but don’t let it intimidate you. Learning to interpret code that you can’t fully 
read is a valuable skill. Note that we’re using variables (transactionAmount, 
accountBalance, etc.) and functions (acceptTransaction(), reject-
Transaction()) that aren’t defined here; in reading this, we assume that this is 
just a chunk of code from a larger program, and values have been supplied for those 
variables elsewhere. This is why self-documenting code is so valuable: the variable 
names tell us what would have been contained here. We could have just as easily 
called these variables foo and spud, but that would make this code harder to read.

This code is built around some conditional statements which we’ll cover in the 
next chapter. For now, though, just note that the first three lines each use a different 
relational operator: the first checks relative numeric value, the second checks non-
numeric equality, and the third checks set membership.

4.  Boolean Operators
We’ve now covered operators for checking a number of different relationships 
among data. Now, we want to chain these decisions together into higher levels of 
reasoning. We do that with boolean operators, operators that themselves work 
on combinations of True and False values, and generate either True or False 
themselves. Like our relational variables, these are very familiar in our everyday 
reasoning.

And
The first operator is and. An and statement is true if every part of the statement is 
true. For example, previously we used the example of going to get grapes out of 
the refrigerator, but finding none. So, you added them to your shopping list. Now 
imagine you’re at the store. You buy grapes if they’re on your list and if they’re in 
stock. That’s two relational operators: “grapes” must be in the set of items on your 
shopping list, and “grapes” must be in the set of items the grocery store has. You pur-
chase grapes if they’re both on your list and in stock at the store. If they’re in stock 
but not on your list, or if they’re on your list but not in stock, you don’t buy them; 
only one part of the statement needs to be false to render the entire statement false.

Or
The second operator is or. An or statement is true if at least one part of the state-
ment is true. We can tweak our previous example to make it an or statement: at the 
store you purchase grapes if they’re on your shopping list or they’re on sale for a 
discount. If they’re on sale for a discount, you buy them whether they’re on your list 
or not. If they’re on your list, you buy them whether they’re on sale for a discount or 
not. Only one part of the statement needs to be true to make the entire statement true. 
Note that or has a closely related but rarely used additional operator, exclusive or 
xor, that resolves to true if exactly one of the variables is true, but false if both are 
true. Not all languages supply the xor operator, but it can always be implemented 
using a combination of and, or, and not.

Not
The third operator is not. not simply alters the value of a part of the statement. For 
example, even if grapes were on your list, even if they were in stock, and even if 
they were on sale for a discount, you would not purchase them if they were rotten. 
The question, “They are rotten?”, however, would return True, which means that 
if it were used in an and or or statement, being rotten would contribute to the true-
ness of the statement. not allows us to switch the value to make sense in the logical 
context of our statement. So, we would say that if the grapes are not rotten, you 
would purchase them.

Boolean Operators
Operators like “and” and “or” 
that act on pairs of boolean (true 
or false) values, or that act on 
single boolean values, like “not”.

And
An operator that acts on two 
boolean (true or false) values 
and evaluates to “true” if and 
only if both are true.

Or
An operator that acts on two 
boolean (true or false) values 
and evaluates to “true” if and 
only if at least one is true.

Xor
An operator that acts on two 
boolean (true or false) values 
and evaluates to “true” if and 
only if exactly one is true.

Not
An operator that acts on one 
boolean (true or false) value 
and evaluates to the opposite value 
(false becomes true, true 
becomes false).
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Combining Boolean Operators
The power of these operators really arises when we put them together in longer, 
more complex chains. We’ve discussed four elements of your decision to buy 
grapes: are they on your list?; are they in stock?; are they on sale for a discount?; are 
they rotten? How do we combine these into one larger statement?

We can use parentheses to group together parts of our logical statement into a 
broader conclusion. We can try to parse the statement in the margin from either the 
outside in or the inside out. Let’s start with the inside out. First, your initial decision 
will be to purchase the grapes if they are either on your list (onList) or on sale 
(onSale); if neither is true, then the innermost statement is false. We notice that as 
we go outward, the boolean operators are both and, so if the innermost statement is 
false, the entire statement must be false.

If the innermost statement is true, however, then we proceed outward. If the 
grapes are not inStock, the status of that innermost statement is irrelevant; they 
can’t be purchased. If the innermost statement is true and they are in stock, it still 
does not matter if they are rotten; if not rotten is false, it negates the rest of the 
statement, too.

This kind of logic forms an enormous portion of the philosophy of computing, 
artificial intelligence, and a field called predicate calculus.

5.  Boolean Operators in Python
Python makes the usage of these boolean operators simple: while other languages 
(like Java and JavaScript) use symbols like &, |, ~, or ! to represent them, Python 
simply uses the words and, or, and not. This makes the language quite readable.

In order to explore these operators, let’s define some boolean variables based on 
our previous example. Just as variables can take numeric values or strings of charac-
ters, so also they can take True or False as values. This is why True and False 
are reserved words in Python, meaning that these terms can’t be used as variable 
names or function names. You will see the four lines in Figure 2.3.9 at the beginning 
of every block of code below.

Figure 2.3.9

And
Our original statement was to check if grapes were both on your list and in stock at 
the store. How do we check this?

In Figure 2.3.10 on line 6, we print the result of onList and inStock. If both 
are true, the statement is true. If either is false, the statement is false. Note that while 

Figure 2.3.10
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Or
Our second example was to check if grapes were either on our list or on sale for a 
discount. How do we check that?

In Figure 2.3.12, we just print the result of onList or onSale. If either is 
True, the result will be True. or works the opposite way as and: if we chain 
together multiple or operators, one single True will render the entire statement 
True.

Figure 2.3.11

Figure 2.3.12

Figure 2.3.13

some languages can only perform “and” and “or” on two operators at a time, Python 
can process multiple, moving from left to right; it evaluates the first pair, replaces 
the pair with the value, evaluates the value with the next variable, and so on. 

Figure 2.3.11 shows evaluating three variables using a pair of and operators. 
The logic here is effectively, “Buy grapes if they’re on my list, in stock, and on sale 
for a discount.” Here, Python first evaluates onList and inStock, and receives 
the result True. It then evaluates True and onSale,” replacing the first part of the 
original statement with True. onSale is False, though, which negates the state-
ment. Processing this way, a single False in a series of and operations will always 
negate the entire series, causing it to be False.

Line 6 in Figure 2.3.13 represents the strange reasoning that you will buy grapes 
if they’re on your list, on sale for a discount, or rotten. I don’t know why you’re 
buying grapes specifically if they’re rotten even if they’re neither on sale nor on your 
shopping list, but that’s what this line says you’re doing!
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Not
Our third example was to check if grapes were rotten. How do we check that?

Figure 2.3.14

Figure 2.3.15

Figure 2.3.16

Combining Operators
So, let’s use these operators and combine them into our original statement, that you 
should buy grapes if they are not rotten, in stock, and either on your shopping list 
or on sale.

Line 6 in Figure 2.3.16 chains together all these operations. Working from the 
outside-in, we see that if the grapes are rotten, it will negate anything else because 
this is half of an and statement. If that does not negate the statement, then inStock 
being False would negate the rest because it is also half of an and operation. If 

To accomplish this, we just print the results of not rotten in Figure 2.3.14. 
rotten is False, so not rotten is True. We can also use not on the results of 
other logical statements as well.

In Figure 2.3.15, we use our not operator in two ways. In line 6, not specifi-
cally applies to onSale, changing the value of the first half from False to True. 
Then, line 6 applies the and operator with rotten, which is False. This equates 
to True and False, which is False. In line 7, however, the not is applied to the 
result of onSale and rotten. onSale and rotten are both False, so onSale 
and rotten is also False. The not operator is outside the parentheses, meaning 
it applies to the result of the inner operation, turning the False to True.

Don’t worry if you’re a little confused. Working with boolean operators is very 
much a skill to be learned, not a set of facts to memorize. When in doubt, try to think 
through the reasoning as if it was a decision you were making in your everyday life.
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both not rotten and inStock are True, then the entire statement is True if 
either half of the inner statement is True. In this case, not rotten, inStock,  and 
onList are all True, and so you purchase the grapes.

Note that we’re using parentheses here to organize our operators. This is not 
totally necessary. If we removed the parentheses, we would get the same result. 
However, including the parentheses makes the code more readable and predictable. 
I would recommend using parentheses to organize the order in which the computer 
interprets your boolean operators whenever you are using a mixture of them, just 
in case.

Simplifying Conditionals
Previously, we looked at the complex code in Figure 2.3.17 for verifying transaction 
information. We’ll cover conditionals later, but for now, let’s look real quick at how 
boolean operators let us simplify this code.

Figure 2.3.17

Figure 2.3.18

6.  Truth Tables
Dealing with boolean operators is one of the foundational parts of computing. This 
spans across languages, domains, operating systems, and more: these are parts of 
the very core of computer science.

In Figure 2.3.18, we see that rather than having each condition in its own state-
ment and line, we can use boolean operators to chain them together. Here, we check 
all the conditions together on one line. However, there is a trade-off: first, line 2 
is harder to read than the sequence of conditionals in lines 2 through 4 of Figure 
2.3.17. Second, we can no longer give feedback specifically based on which condi-
tion was false. This is a good example of the trade-offs in programming between 
simplicity and readability. There is no right answer; the best choice will depend on 
the program you’re writing. If it is important to have feedback on why the transac-
tion was rejected, the first way is necessary. If this is not needed, I might argue the 
second is just as good.
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To explore these further, we use something called truth tables. Truth tables 
are visualizations that help out with simulating and understanding the results of 
different boolean operators. Let’s start with a couple of simple ones, then move on 
to some more complex ones.

And, Or, and Not
To visualize the simplest truth tables, let’s start with the three basic Boolean opera-
tors, and, or, and not.

Truth Tables
Tables that map out the results 
of a statement in boolean logic 
(that is, using boolean operators) 
depending on the values of the 
individual variables.

Figure 2.3.19

Figure 2.3.20

Figure 2.3.21

In a truth table, we have a number of different columns and rows. A single 
truth table corresponds to a single boolean statement. We then have a column for 
each variable (the two on the left of Figure 2.3.19, and  column for the result (the 
one on the right). In Figure 2.3.19, we have the truth table for the overall statement 
a and b: columns for a and b, and a column for the result. Each row of the table 
assigns the variables different values, until all possible combinations of values 
have been listed; here, we have two variables, so four rows are needed to capture all 
the combinations. The number of rows will always be 2number of variables—four rows 
for two variables, eight rows for three variables, sixteen rows for four variables, 
etc.

The truth table shows what happens for each combination of variables. When-
ever either of them is False, the result is False. When both are True, the result 
is True.

In Figure 2.3.20, or is the opposite result: whenever either variable is True, 
the result is True. Whenever both variables are False, the result is False.

In Figure 2.3.21, the not operator gives us the simplest truth table of all: only 
one variable, and when it’s True, the result is False; when it’s False, the result is 
True. If this sounds strange, then think of it in terms of a real example: if it’s true 
that the grapes are rotten, then it’s false that the grapes are not rotten.
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More Complex Truth Tables
The power of these truth tables shows up when we evaluate more complex state-
ments. For example, in Figure 2.3.22 we have the statement a or (b and not c). 
That’s a complicated statement, but the truth table allows us to organize the different 
possibilities and go through them one by one. The table has eight rows because there 
are eight possible combinations of values for the three variables (23 is 8).

Figure 2.3.22

Figure 2.3.23

In the first row, all the variables are True. So, we can start with the innermost 
parenthesis: b and not c. This is an and statement, so both b and not c must 
be True for the statement to be True. b is True, but not c is False (because c 
itself is True). So, this inner parenthetical is False. The statement now reads a or 
false; a is True, and an or requires only one part to be True. Therefore, the first 
row is True.

We might also notice here that the results of the inner parenthetical don’t matter 
as long as a is True; since a is half of an or statement, we can go ahead and say any 
row where a is True resolves to True.

That just leaves us with the rows where a is False. We know these rows will be 
False if the parenthetical is False, which we know it will be if b and c are both 
true from our work on the first row. So, we can go ahead and mark False on row 5. 
Now, we would need only to resolve the last three rows.

Properties of Boolean Operators
Let’s look at some of the properties of boolean operators to explore truth tables a 
bit more. In looking at these examples, look both at how the truth tables are being 
resolved and at the ultimate conclusions they carry.

First, individual boolean operators are commutative, as shown in Figure 2.3.23. 
That means that it doesn’t matter the order in which the variables are presented 
if only one type of operator is used: a and b presents the same result as b and a. 
This applies also to multiple of the same operator: a or b or c produces the same 
result as c or b or a. Note that this does not apply to a mixture of operators: a and 
b or c is not guaranteed to produce the same output as c or b and a. That’s why 
it’s important to use parentheses to tell the computer in what order to read more 
complex logical statements.
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Second, boolean operators are distributive, as shown in Figure 2.3.24. This is 
hard to describe in abstract terms, so let’s describe it concretely: here, we’re compar-
ing a and (b or c) with (a and b) or (a and c). We’ve “distributed” the 
a and to the individual operators inside the parentheses, and the result of the state-
ment is the same. This applies to any other combinations of and and or operators 
as well—any not operator would stay with the variable to which it was attached.

Finally, an interesting application of truth tables is to something called “de 
Morgan’s Law,” shown in Figure 2.3.25. The law says that the negation (not) of 
an and operation between two variables is the same as an or operation between 
each variable’s negation on its own. That sounds complicated, so let’s put it in more 
practical terms with our variables inStock and onList from our grapes example. 
If it’s true that grapes are not both in stock and on our list, then it’s true that either 
grapes are not in stock or they are not on our list. One of the two parts of the state-
ment must be false if the entire statement is false. So, we can transform our not 
and statement into not or not: they’re not both in stock and on our list becomes 
they’re either not in stock or they’re not on our list.

de Morgan’s Law applies in the other direction as well. The negation of an or oper-
ation between two variables is the same as an and operation between each variable’s 
negation on its own. Let’s put this in terms of our onList and onSale operations. 
If they’re not either on our list or on sale, then they’re not on sale and not on our list.

Figure 2.3.24

Figure 2.3.25

Figure 2.3.26

Figure 2.3.27

If this is still confusing, the diagram in Figure 2.3.27 may help. Note how the 
“and,” “or,” and “not” in our natural language description of this situation map 
to the “and,” “or,” and “not” in our logical statement. The two statements are 
expressing the same content. And if this is still confusing, don’t fret: this is a skill 
to be practiced, not a formula to be memorized. As you do more work with boolean 
operators, this will start to feel far more natural.
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81

Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to: 

•	 Use different mathematical 
operators in programming and 
describe real-world scenarios in 
the context of incrementing and 
self-assignment;

•	 Write lines of code that leverage 
the seven Python operators;

•	 Use self-assignment operation 
and the method of incrementing 
the values of the variable;

•	 Write turtle programs that 
leverage mathematical operators.

2.4Mathematical Operators

c h a p t e r 

1.  What Are Mathematical Operators? 
Previously, we discussed logical operators. Logical operators took as input one 
or two boolean values and produced a boolean as output. Mathematical operators 
work in much the same way: they take one or more numbers as input, and produce 
a number as output. Some mathematical operators are also able to work on input 
besides numbers; we’ll talk about that later as well.

The Assignment Operator
The first mathematical operator—if we can call it mathematical, it’s a bit of a special 
case—is one we’ve actually already seen before. It’s the assignment operator. The 
assignment operator is the operator we use to give, or assign, a value to a variable. 
It populates the variable with a value in the first place.

The reason I include the assignment operator as a mathematical operator (even 
though it’s also used to assign other values to variables) is that, besides populating 
variables with their initial values, it is very often used in the context of mathematical 
operations. When we perform an addition, subtraction, or other mathematical opera-
tion we need to store the results somewhere. Typically, we do so by assigning the 
outcome to a variable. Often, we’ll actually assign the outcome to one of the vari-
ables used in the calculation, which will feel odd, but you’ll see the usefulness soon!

Mathematical Operators
Aside from the assignment operator, the other mathematical operators are bor-
rowed directly from arithmetic. As I’ve said before, if you don’t enjoy math, don’t 
worry; as we get started in programming, you don’t need any more mathematical 
background than basic arithmetic. Almost every programming language supplies 
at least five operators: addition, subtraction, multiplication, division, and modulus. 
The first four of these should be straightforward.

The fifth operator, modulus, is the remainder function. When you divide two 
integers and one does not go evenly into the other, you have a remainder. For 
example, 3 goes into 7 twice, with 1 left over. So, 7 modulus 3 would give a result 
of 1: it returns only the remainder of the division, not the result itself. This is actually 
extremely useful. For example, how do you check if a number is even? The simplest 
way is to check if the number modulus 2 is 0; if there is no remainder when the 
number is divided by 2, then it is even. For a more authentic example, imagine you 
are programming a website that laid out images in rows of 10. To know when to start 
a new row, you would need to know when the number of pictures in the current row 
is 10. You could do this by using the modulus operator to check if the total number 
of pictures shown so far is a multiple of 10. If so, you would start a new row.

Additional Operators
Some languages supply additional operators as well. For example, some languages, 
like Python, have dedicated operators for using exponents. Others, like Java, require 
separate functions to accomplish the same goal. Functions and operators can be  

Assignment Operator
An operator that takes the 
output of an expression and 
assigns it to a variable.

Mathematical Operators
Operators that mimic basic 
mathematical functions, like 
addition and multiplication.

Modulus
The remainder function, returns 
the remainder of one number 
divided by another.
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very similar in that both take one or more variables or values as input and return 
some output. Operators are distinct in that they’re usually represented by a dedicated 
character or keyword, like a plus sign for addition or not for a negation, rather than 
by a function name like print() or len().

2.  Mathematical Operators in Python 
You’ve seen the assignment operator in the past, and you continue to see it in nearly 
every segment of code we look at. With the assignment operator, we place a variable 
on the left, and something on the right that resolves to a value. It could just be a value 
on its own, or it could be an operator, function, or expression that results in a value. 
We’ll continue to see this as we go on.

So, here, let’s focus first on the four simple mathematical operators, then on the 
modulus operator, and then on a couple of special operators that Python supplies.

The Basic Mathematical Operators
The basic mathematical operators are addition, subtraction, multiplication, and divi-
sion. They work just about as you might expect.

len()
A function that takes as input a 
variable with a length, such as 
a string of characters or a list of 
items, and returns its length.

Figure 2.4.1

Note in Figure 2.4.1 we’re doing something a little clever: we’re making our 
variable names the spelled-out version of the values they hold to make it easier to 
see the results are what we expect them to be. Note that the value of three doesn’t 
have to be 3, but we’re doing that to make our code a little easier to follow.

We see about what we expect: 9 + 3 is 12, 9 − 3 is 6, 9 × 3 is 27, and 9 ÷ 3 is 
3, with * and / for multiplication and division, respectively. Each operation does 
just what we’d expect. Note, however, there is something interesting that happens 
here: when we add, subtract, and multiply two integers, our result is an integer as 
well; that’s true in math itself as well as in programming. However, note that when 
we divide two integers, we get a float (3.0), even if one number went into the other 
one evenly. That’s because unlike addition, subtraction, and multiplication, division 
does not guarantee an integer result even if it applies to integers. So, division always 
gives a float, with .0 as the decimal if the numbers did in fact divide evenly.

Note that this sets Python apart from other languages. Most languages, when 
dividing integers, round down automatically. They can be thought of as, “How many 
complete times does this number go into that one?” Python, however, implements 
division more in the way to which we’re accustomed: a decimal value is returned 
just in case one number does not go evenly into the other.

Typically, rather than printing the results of these operators outright, we’ll save 
them to some variable. In Figure 2.4.2, we see the assignment operator used that way: 
it is used to assign the sum of nine and three to the variable name mySum on line 7, 
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the difference to myDifference, and so on. Note this code has no output because 
it has no print statements; it still, nonetheless, runs as expected.

Modulus
While those four operators are relatively straightforward from your days in arithme-
tic, the fifth common operator, modulus, is a little stranger. The modulus operator 
executes the remainder function: it divides two integers, but instead of returning 
the quotient, it returns the remainder of the integer division. In Python, modulus is 
represented by the percent (%) character. Let’s see an example.

There’s a lot of print statements in Figure 2.4.3, but don’t let them startle you—
we’re using so many just to show the pattern. The first batch (lines 1 through 4) 
shows the remainders when dividing numbers by 2, while the second batch (lines 6 
through 11) shows the remainders when dividing numbers by 3. Starting from line 
1: 2 goes into 3 once with 1 left over, so 3 % 2 is 1. 2 goes into 4 twice with 0 left 
over, so 4 % 2 is 0. 2 goes into 5 once with 1 left over, so 5 % 2 is 1. When dividing 
by 2, we would alternate between 0 and 1. When dividing by 3 in lines 6 through 11, 
the pattern shifts a bit: we alternate between 0, 1, and 2.

Figure 2.4.3

Figure 2.4.2

The modulus operator is extremely useful in many areas of programming. We 
described two earlier: creating rows of length 10 and creating alternating patterns. 
Modulus is also used extensively in information security and cryptography among 
other areas.
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Other Operators
Python supplies a couple of other operators as well. The first is a little strange: it’s 
called floor division. Floor division mimics the way integer division works in many 
other languages; it effectively divides two integers and rounds the result down to the 
nearest integer. It’s represented in Python by a double slash (//).

Note the differences in division and floor division in Figure 2.4.4. When divid-
ing nine by three, division on its own results in a float in line 5. As we noted earlier, 
in Python, division automatically results in a float even if you’re dividing two 
integers. Floor division, on the other hand, always returns an integer. It returns the 
number of times one number goes into another one, ignoring how much is left over. 
So, using the floor division operator on 9 over 3 results in 3 in line 8.

Floor Division
Division that rounds the result 
down to the nearest integer.

Figure 2.4.4

Figure 2.4.5

When we use the floor division operator with numbers that are not evenly divisi-
ble by each other, we see the difference more clearly. The result of the division oper-
ator in lines 6 and 12 of Figure 2.4.5 includes the decimal; the floor division operator 
in lines 9 and 15 rounds down. So, with division in line 6, 5 / 2 is 2.5, whereas with 
floor division in line 9, 5 // 2 is 2. 2 only goes into 5 two complete times, so 5 // 2 
is 2. Note that when using negative numbers, floor division still rounds down, not 
toward zero. So, −5 // 2 in line 15 is −3, not −2. I can’t honestly say I’ve ever had a 
reason to use floor division or modulus with negative numbers, though.

The other somewhat unique mathematical operator Python supplies is the expo-
nentiation operator, for using exponents. Most languages I’ve seen use a function to 
supply this capability, but Python reserves the double-asterisk (**) for exponentia-
tion as shown in Figure 2.4.6. Line 6 shows 52. Line 8 shows 25. Line 10 shows -52. 
Line 12 shows 2-5.
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3.  Self-Assignment and Incrementing 
In many ways, variables and mathematical operators work the same way in pro-
gramming as they do in algebra. However, one of the most common usages of vari-
ables in programming isn’t common in most mathematics: self-assignment.

Self-Assignment
Self-assignment means assigning a variable to a value that is in part determined by 
the current value of the variable itself. In other words, instead of assigning the vari-
able to the output of an operator on other values (like addition) or a function (like the 
length of some string), the variable is set to a new value that is based on the current 
value of the variable.

This is hard to describe in abstract terms, so let’s take an example. Imagine you 
receive a paycheck that is automatically deposited into your bank. What is your new 
balance? Well, your new balance is your old balance plus your paycheck’s amount. 
The calculation of the new balance is based on the value of your current balance: 
newBalance = oldBalance + paycheck. But really, you only have one bank account 
balance: it just changes over time. So, it makes sense to only have one variable to 
represent your balance, and just update that variable over time: balance = balance 
+ paycheck. The details of this situation, however, mean that updating that balance 
involves using the current balance in the calculation. This is self-assignment: the 
variable receiving the value on the left is used in the calculation on the right.

Incrementing
The most common place this principle is likely used is with incrementing. Incre-
menting refers to having a variable whose job is to count something. Imagine, for 
example, you want to count the number of instances of a certain word in a docu-
ment. So, you create a variable to hold the number of times you’ve found it so far, 
perhaps calling it wordCount. Every time you encounter the word, you add one 
to wordCount. That means every time you encounter the word, you reassign the 
variable wordCount to the value that results from wordCount plus one. In other 
words, you say, “My new value for wordCount should be whatever my old value 
was, plus one.”

In practice, this can feel very strange at first. In most languages, you would 
write this as wordCount = wordCount + 1. It feels weird to have wordCount 
on both sides of the assignment. However, this makes more sense when you con-
sider how the computer executes this statement. Let’s imagine our current value of 
wordCount is 5, and we’ve just encountered another instance of the word, so we 
run wordCount = wordCount + 1 (or your language’s equivalent). The computer 

Self-Assignment
A common programming pattern 
where a variable is assigned to 
the output of an expression that 
included the variable itself.

Increment
Repeatedly adding a constant, 
typically one, to a variable.

Figure 2.4.6
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starts by interpreting the right side of that assignment statement: the value of word-
Count is 5, the value of 1 is 1, and 5 + 1 = 6. So, the computer effectively replaces 
wordCount + 1 with 6. Now, it runs the new line, wordCount = 6, which changes 
the value of wordCount to 6. The line is done, and wordCount’s value is now 6.

4.  Self-Assignment and Incrementing in Python
Let’s see how this works in Python. Self-assignment is common enough that we 
can demonstrate it pretty straightforwardly. For incrementing, we’ll have to briefly 
preview a topic that we’ll get to more fully in Chapter 3.3, loops.

Self-Assignment
We saw in Figure 2.4.2 an example of assignment with mathematical operators in 
Python: we would have a mathematical expression on the right, and a variable on the 
left to which to assign the results of the expression (e.g. x = 5 – 2). Self-assignment 
isn’t actually any different; the only thing that makes self-assignment unique is that 
a single variable appears on both sides of the statement. To the computer, it actu-
ally isn’t different at all because it interprets the right side of the statement before 
looking at the variable to which to assign its result.

In Figure 2.4.7, we create a variable myNum and assign it the value 5 on line 1. 
We print it on line 3 to ensure the value really is 5. Then on line 5, we run myNum = 
myNum + 1, or “Set the value of myNum to its current value plus 1.” When we print it 
again on line 7, we see that sure enough, its value has increased by 1. Running the 
line again on line 9 increases it by 1 again. Replacing 1 with 5 on line 13 increases 
myNum by 5.

Figure 2.4.7

Self-assignment works the same way with any of the mathematical operators, 
or with more complex chain of operators. In Figure 2.4.8, we show it working with 
all seven mathematical operators, concluding with division to save the conversion 
to a float until the end.

Note that the self-assignment operator works the same way no matter what is 
going on in the right side of the line of code; it doesn’t just have to be a mathematical 
operator. In Figure 2.4.9, we create a string called myString on line 2, and print it 
on line 4. Then, we set the value of myString to the string version of its own length 
on line 7. len(myString) returns the number of characters in myString, which 
is originally 12. So, len(myString) is replaced by the integer 12. str(12) then 
changes the integer 12 to the string “12,” and sets myString equal to “12.” Then on 
line 11, we repeat that, this time with “12” as the value of myString, which ends 
with myString having the value “2,” since there are two characters in “12.”
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The important takeaway here is that, as far as the computer is concerned, it 
really doesn’t matter if the variable receiving a new value is used in the calculation 
of that new value. The computer evaluates the right side of the expression to get the 
value, then assigns that value to the variable. Having the same variable on both sides 
doesn’t affect that process.

Self-Assignment Shortcuts
Self-assignment is very common in programming. We are constantly using a single 
variable to keep track of a changing value, and it’s very common for that changing 
value to be based in some way on the current value. Counting, incrementing, tracking 
a balance, measuring lag time, and lots of other tasks will involve self-assignment. 
So, most languages—Python included—actually supply a little shortcut. You never 
need to use this shortcut because the syntax in Figure 2.4.8 will always work, but 
these tasks are common enough that simplifying them a bit can be helpful.

The self-assignment shortcuts all work basically the same way: you enter the 
variable receiving the value, then the mathematical operator you want to use, then 
the equal sign, then the expression that gives the value to use with the operator. It’s 
simpler than it sounds, as seen in Figure 2.4.10.

Figure 2.4.8

Figure 2.4.9
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This code is functionally equivalent to the code from Figure 2.4.7. myNum += 
1 translates to “Add 1 to myNum”, or “Set myNum to the sum of myNum and 1.” In 
many ways, this might makes self-assignment more intuitive because we see it as 
an operation on the variable itself, not an operation that treats the variable like it’s 
two different things. So, the line myNum = myNum + 1 is the same as myNum += 1.

These shortcuts apply to every mathematical operator. The code in Figure 2.4.11 
is the equivalent of the code shown in Figure 2.4.8 as well.

Figure 2.4.10

Figure 2.4.11

Figure 2.4.12

This also works for those strange, nonmathematical applications of these opera-
tors. For example, strings use the + operator to put two strings together. So, when 
we run myString += “!” on line 5 in Figure 2.4.12, it appends “!” to the end of 
myString, as if we had said myString = myString + “!”.
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Incrementing and Loops
The most common place we use incrementing is with loops. Loops are segments 
of code that are run multiple times, either a predetermined number (e.g., “run this 
ten times”), a number for each item in a list (e.g., “run this for each character in 
this string”), or while a condition is true (e.g., “run this until you find the word I’m 
looking for”).

We’ll talk about loops more extensively in Chapter 3.3, but for now, we’ll use 
a simple example to demonstrate incrementing. Imagine we wanted to measure the 
length (number of characters) of a string, and we didn’t realize the len() function 
existed. How would we do that?

Figure 2.4.13

Figure 2.4.14

Line 4 of this code, beginning with for, basically says “Repeat the code 
indented below for each character in the string.” The string has twelve characters, 
and so letterCount += 1 runs 12 times. So, in the end, letterCount equals 
12. This is a trivial example, of course, but it is the foundation of more complex 
examples. For example, imagine you wanted to find the number of students in a class 
receiving As, Bs, etc. You’d loop through every student in the class, and if they were 
receiving an A, you’d increment a counter for A; if they were receiving a B, you’d 
increment a counter for B; and so on.

5.  Operators Together 
We’ve now covered both types of operators: logical and mathematical. Did you 
know, though, we can use them together? We’ll do this more when we reach condi-
tionals next in Chapter 3.2, but in the meantime, let’s look at some of the ways we 
can use logical and mathematical operators together.

Checking If a Triangle Exists
In geometry, there’s a rule about triangles that says: three side lengths can form a 
triangle if and only if the sum of the two shorter sides’ lengths is longer than the 
longest side’s length. Don’t worry if that doesn’t sound familiar, you don’t need any 
background in this to understand this example. Imagine if we want to write some 
code that takes three side lengths from the user and checks if a triangle can be made 
out of them.

There’s a lot going on in Figure 2.4.15, so let’s take this one step at a time. First, 
in lines 2, 4, and 6, notice how we’re getting input from the user using the input() 
function, and then converting it to an integer in the same line with the int() func-
tion. We could have done this in two lines for each side, but since we never need 
the string version of the user’s input, we might as well just convert it to an integer 
immediately. If that’s confusing, glance back at 2.2.7.

Once we have these three sides, we move on to line 9. Here, we create a vari-
able result to store the results of our question. We then ask: The sum of side1 
and side2 is larger than side3? True would mean yes, False would mean no. 
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How does the computer evaluate this? It starts with the innermost parentheses, so 
it evaluates side1 + side2, which gives 3. It then effectively replaces (side1 + 
side2) with 3. Now, it evaluates 3 > side3, where side3 has the value 3. 3 is not 
greater than 3 (it’s equal), and so this statement is False. False is then stored as 
result, as seen when we print result on line 11.

The print statement on line 11 here is somewhat new, but it’s extremely useful: 
we’re labeling the print statement with some indicator of what it means. The com-
puter implicitly converts result to a string, and then puts the statement in quotes 
and the text of result together.

Composition of Operators
The example in Figure 2.4.15 is here for another reason: it shows how we can put 
together functions, such as type conversions, and operators in a single line. We’re 
starting to move into some more advanced ways of writing lines of code.

Imagine, for example, we wanted to write some simple code that could be used 
to grab two numbers from the user and print their sum. Figure 2.4.16 shows one way 
we could do that.

Figure 2.4.15

Figure 2.4.16

This works perfectly fine, but does it really take us six lines of code to perform 
one of the most simple programs with user input we could write? As we’ve said 
before, it’s not good to strive for the fewest lines possible when you’re working in 
computing, but it’s a good exercise to test your coding ability. Try to shorten this 
code down to four lines, then to three lines, and then to one line.

Borrowing from our earlier examples, you may quickly see that lines 2, 4, 7, and 
10 could have been smooshed into two by performing the type conversion alongside 
the input, as we did in Figure 2.4.15. You may have also recognized you could just 
print the sum instead of saving it in the variable sum. That would take you to three 
lines, but that last jump to one line might be tough.

Figure 2.4.17 shows how it could be done, though. I should note that this isn’t 
something you’d want to do in a real programming environment; this line is hard 
to read. However, it’s useful to show what we can do. Let’s step through how the 
computer runs this line. Like we’ve said, it starts with the innermost parentheses. In 
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this case, there are two parentheses at equal levels: the two sets of parentheses fol-
lowing the two input() functions. That means that input gets executed first, from 
left to right. So, the program first gets the user’s input.

So, the two input functions are now basically replaced by “1” and “2” from the 
user’s input. Note that the input function gets the user’s input as a string, so right 
now, our effective line of code reads, print(int(“1”) + int(“2”)). Now, the 
computer again starts with the innermost parentheses, which now are the parenthe-
ses following the int() functions, the type conversions. It runs int(“1”) to get 
1 and int(“2”) to get 2, and those integers now replace those function calls. So, 
now the effective line is print(1 + 2). Now, it evaluates the innermost parentheses 
again, finds that 1 + 2 resolves to 3, and prints 3.

This is a complex example of how the computer interprets this line. If this was 
confusing, don’t worry. This takes practice to really understand.

6.  Operators and Context in Python
One of the unique things about operators is that they can be designed to react intel-
ligently to the types of data they’re asked to act on. We’ve already seen a little bit of 
this: when we divided two integers together, Python knew to return the result as a 
float since the result would typically have a decimal attached to it. Let’s check out a 
few examples of operators reacting differently based on their context (i.e., the type 
of data they’re operating on).

Integers and Floats
First, let’s look at how the different operators react to being asked to work on a 
combination of integers and floats.

In Figure 2.4.18 on line 6, when the addition operator is used on two integers, 
the result is an integer. This makes sense; if both numbers are integers, decimals 
aren’t going to appear out of nowhere. When the addition operator is used on an 
integer and a float on line 8, the result is a float. This also makes sense; we can 
always easily convert an integer to a float by adding .0, but we cannot always easily 
convert a float to an integer without losing some information (like dropping the 
decimal point). Sometimes we can (and here, we could), but it’s safer to assume that 
the result should be a float if any of the operands were floats.

Figure 2.4.17

Figure 2.4.18

Python operates similarly across all the mathematical operators, as shown in 
Figure 2.4.19; whenever we mix an integer and a float, the result is a float. This 
is generally unsurprising, except for potentially where we use the floor division 
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operator. Even when operating on floats, the floor division operator is guaranteed to 
return a whole number because it counts whole times one number goes into another; 
however, when it is used on a float, it still returns a float.

String Operators
Interestingly, there are also instances where these operators can be used on strings. 
That might seem strange since most of these operators heavily suggest something 
numeric. The mathematical operators obviously work on numbers, and the relational 
operators typically focus on numerical relationships as well. However, some of our 
operators work on strings.

Figure 2.4.19

Figure 2.4.21

Figure 2.4.20

We’ve seen one example of this already. The addition operator, when applied 
to strings, puts two strings together into one new string. In Figure 2.4.20, we start 
with “Hello, world”, and we add “!” to it, ending up with “Hello, world!”. This is 
the only mathematical operator that works on pairs of strings. What about relational 
operators, though?

Perhaps surprisingly, our relational operators work fine on strings as well. It’s 
not too surprising that the equality operator works on line 7 of Figure 2.4.21 since 
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Finally, one last surprising instance of operators understanding their context 
happens when we try to multiply a string by an integer. That doesn’t make any 
logical sense to us: how do you multiply text by a number? Python, however, has an 
interpretation for it, shown in Figure 2.4.23: it duplicates the string the given number 
of times. Interestingly, this is the only operator that works this way for strings, and 
it only works with a string times an integer. A float times a string will not have the 
same result, and will instead give an error.

Figure 2.4.22

Figure 2.4.23

7.  Operators and Turtles   
Now that we’ve covered lots of how operators can work, let’s put them into action 
with our turtles domain.

Exponential Circle Growth
First, let’s check out a simple application of the exponentiation operator. In Expo-
nentialCircleGrowth-1.py, we create an initial radius myInt, and then we draw 
increasing sizes of circles based on raising myInt to increasing powers. So, we see 
the circles growing at an exponential rate: they start pretty small, but quickly they 
get extremely larger. We haven’t reached loops yet, but we talked about them a little 
when we talked about incrementing, so let’s take a look real quick at how this code 
could be simplified using a loop to show off incrementing.

We can cut those eleven lines down to six lines by using a while loop. A while 
loop basically says, “Keep running the code below until something is true.” In 
ExponentialCircleGrowth-2.py, it continues to run the code indented below it until 
myExponent is at least 10, which will happen eventually since myExponent is 
incremented each time the loop runs in the last line. Note also that while this cuts 

it makes sense to check if two strings have the same characters, but what does it 
mean for one string to be “greater” than the other? In this context, it means the 
string comes later alphabetically. One string is greater than another if, when sorted 
alphabetically, it would come after it. In Figure 2.4.21, “A” is less than “B” in line 
4, and “C” is not less than “A” in line 5. We can use this to sort strings alphabeti-
cally, although beware that Python sorts uppercase and lowercase strings separately.

In Figure 2.4.22, we see that as expected, “A” is less than “B” because it comes 
first alphabetically. Perhaps surprisingly, “A” is also less than “a”; in Python’s inter-
pretation, all uppercase letters are less than all lowercase letters. That explains the 
last line: “a” is not less than “B.”
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this code from 11 lines to 6 lines, these 6 lines could draw any number of circles 
just by changing the number at which the code stops. If we changed myExponent < 
10 to myExponent < 100”: the loop would run 100 times. I don’t recommend that, 
though: on my computer, that code would take 212 million years to run to comple-
tion, and would generate a circle with the radius roughly equivalent to that of the 
observable universe.

Visualizing Modulus
We can also visualize our modulus function using our turtles library. Let’s write a 
program, VisualizingModulus.py, that will divide two numbers, and draw how much 
of the division is the rounded quotient and how much is the remainder.

First the code gets two numbers from the user. It then draws the dividend, the 
whole number, as a black line on the bottom. The turtle then moves to draw the top 
line. It then draws a line with length ((dividend // divisor) * divisor). 
What this does is finds the number of whole times the divisor goes into the dividend, 
then draws a line that covers all those times in red. For example, if the divisor goes 
into the dividend three times, it draws a line with length three times the divisor. 
This covers the times the divisor goes into the dividend in its entirety. It then uses 
dividend % divisor to find the remainder after that, and draws a red line with 
that width.

In the abstract, this is tough to follow, so let’s talk about this exact example. Try 
entering the numbers 17 and 6. That means  we want to divide 17 by 6. How many 
whole times does 6 go into 17? It goes in two times: 6 × 2 is 12, which is less than 
17, but 6 × 3 is 18. So, 6 goes into 17 twice, with some remainder. The remainder 
is 5 because 17 − 12 is 5. First, this code draws a line with length 17 to show the 
entire number we’re dividing. Then, the turtle moves up to draw the quotient-and-
remainder line. It grabs the quotient, which is 2, and multiplies it by the divisor, 6, 
to get 12. So, it draws a red line with length 12. This covers the times 6 completely 
goes into 17. Then, it grabs the remainder, which is 5, and draws a blue line to cover 
the rest of the way. The top line is always guaranteed to be the same length as the 
bottom line, only divided between the red quotient and the blue remainder.
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97

Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to: 

•	 Identify the types of control 
structures and illustrate them 
with examples;

•	 Demonstrate the use of 
indentation with control 
structures;

•	 Identify code blocks and a 
variable’s scope in Python.

3.1Control Structures

c h a p t e r 

1.  What Are Control Structures?
At this point, we’ve covered the basic design of procedural computer programs. 
Every program we’ve seen, except for the glimpses forward we’ve taken, has run a 
linear series of lines of code in order from first to last, generating output. In doing so, 
we’ve been able to do some powerful things, but at the same time, what we can do 
is somewhat limited. For example, we can draw a hexagon in around twelve lines of 
code, but what if we want to draw an octagon? So far, that means writing new lines 
of code, lengthening the program. Wouldn’t it be great if we could just say, “I’d like 
a shape with 8 sides” and get an octagon instead of having to write the code?

What Do Control Structures Do?
Control structures are where we start to have that capability. Control structures 
let us loop over certain lines of code multiple times, changing the data they act on 
each time. Control structures let us branch our code based on the result of some 
conditional statement, like returning one message if a customer has sufficient money 
to make a purchase and another if they don’t. Control structures let us repackage 
code that is commonly used into functions, like validating a customer’s information 
or making a series of turns in a vehicle. Control structures let us anticipate certain 
errors and react gracefully instead of crashing.

The content of these control structures will largely be the same kinds of code 
we covered with procedural programming; control structures, in many ways, simply 
control what lines of code will be run in what order. This makes what we can create 
orders of magnitude more powerful.

2. � The Control Structures
We’ll generally break our conversation about control structures into four types of 
structures: conditionals, loops, functions, and exception handling.

Conditionals
One of the first types of structures we’ll cover to add to our programming toolbox 
is conditional statements. Conditionals basically tell the computer to make a deci-
sion. Depending on that decision, it might execute some code or skip that code; or, 
it might choose between two different blocks of code to execute.

Conditionals build on our logical operators that we covered last unit. In fact, 
almost every conditional statement reacts to the result of a logical expression. For 
example, imagine we’re writing code to validate a transaction at the store. We 
might write, “If the customer has a sufficient balance for the purchase, then permit 
the purchase; otherwise, reject the purchase.” This is a conditional statement based 
on the result of the relational evaluation of the customer’s balance and the purchase 
price. Depending on the result of that logical expression, the code will do different 
things.

Conditionals can be used to make very complex code structures. For example, 
you could nest several conditional statements one after the other to check the 

Control Structures
Statements that control the flow 
of execution of the program. 
Or, more simply, lines of code 
that control when other lines of 
code run.

Conditional Statements
Programming statements that 
control what code is executed 
based on certain conditions; 
usually of the form “if”, “else 
if”, and “else”.
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customer’s balance, the retailer’s authenticity, and the cardholder’s identity. You 
can also write single conditional structures that react to multiple conditions; for 
example, if a purchase is rejected, you might want your code to then check for 
fraud if other suspicious purchases have been attempted. In this way, conditionals 
are powerful tools for creating complex code.

Loops
A loop involves executing certain lines of code multiple times. Multiple times might 
be a certain number of times; it might be for every item in a list, like for every file in 
a folder; or it might be while some condition remains true, like reading from a file 
as long as you haven’t reached the end yet.

We can think of our example of programming a cash register in terms of loops. 
First, the register would loop through every item that the customer is purchasing. 
For every item, it would execute several lines of code: it would update the custom-
er’s running total, it would update the store’s internal inventory, it would calculate 
and add tax to the product’s value, and so on. The same lines of code would be 
executed for each item the customer is purchasing. What’s more, that loop, as well 
as operations for getting the payment method and validating the purchase, would 
be run while the store still has customers waiting in line. So, that’s another loop, 
this time one operating on each customer in order.

Like conditionals, loops can be complex and nested. In fact, the example above 
would be a nested loop: we would run the loop over a single customer’s items for 
every customer in line. We can also use loops in other complicated ways as well. 
For example, if we wanted to write a program that would consistently listen for 
some interruption from a server, we could simply tell it to loop indefinitely until a 
message was received.

Function
A function is a way of packaging together multiple lines of code in a way that 
allows them to be easily used wherever needed. In effect, it removes the need to copy 
and paste lines of code around our program when needed because instead of copying 
them, we can just “call the function” that contains them. Practically speaking, this 
is like dynamically inserting the lines of code from the function into the rest of the 
code and running them right there.

You’ve already seen some examples of functions. This isn’t because we were 
trying to get ahead of ourselves, but rather it’s because functions are so fundamen-
tal to modern programming that it’s difficult to show anything without using some 
functions. Even something as fundamental as printing to the console is usually 
run through a function. In practice, functions behave just like operators: they take 
some input and produce some output. Operators are simply low-level, extremely 
common functions, but every operator could be rewritten as a function.

The real power of functions is their ability to take lots of different pieces of 
input and produce some output. You could have, for example, a single function 
called validatePurchase() that takes as input a customer’s name, credit card 
number, purchase amount, current balance, and retailer name, and returns either 
True or False to indicate whether the purchase is valid. This goes far beyond 
just adding or subtracting a couple of numbers; functions can handle complex 
operations.

Exception Handling
Earlier in our material, we covered the idea of errors. Errors occur when your code 
tries to do something it can’t do such as accessing files that don’t exist or dividing by 
zero. So far, we’ve usually talked about errors in the context of debugging. However, 
can we actually use errors in the design of our programs?

Loop
A programming control structure 
that executes a segment of code 
multiple times.

Function
A segment of code that performs 
a specific task, sometimes taking 
some input and sometimes 
returning some output.
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Exception handling tries to do exactly this. With exception handling, we 
anticipate certain errors (“exceptions,” in this case) might arise, and we program in 
a way to recover from them. In many ways, they’re extremely similar to condition-
als; you can think of nearly every instance of exception handling as saying, “If an 
error is encountered in the following code, then…”

When would we want to anticipate and handle errors instead of just avoid-
ing them? Think of our example of loading information from a file. Let’s say we 
prompt the user to enter a filename. We have no guarantee the filename they enter 
is valid. So, we need to check it first before trying to load it, right? That’s one way 
we could do it. However, we know that if the file doesn’t exist, we should get an 
error that says “file not found.” So instead of checking if the file exists before trying 
to load it, we could instead just try to load it, and prepare our code to handle a “file 
not found” error if it arises.

3.  Indentation and Control Structures in Python
The fundamental idea of control structures is that certain lines of code tell the com-
puter how to interpret or when to execute other lines of code. With a conditional 
statement, for example, certain lines of code only run if the logical expression is 
true. However, that means the code needs some way of telling the computer which 
lines of code apply. In most languages, this is taken care of with reserved characters 
like brackets around the lines of code; Python, interestingly, uses indentation.

Indentation and Conditionals
Let’s look at this with a simple example of a conditional statement. We’ll talk more 
about conditionals in the next lesson, but for now, just know that the third line of 
Figure 3.1.1 says, “if myNum1 is less than myNum2, do the indented line of code 
below.”

Exception
An error that a program might 
want to anticipate and catch 
instead of outright avoiding.

Exception Handling
A control structure that catches 
certain anticipated errors and 
reacts to them accordingly.

Indentation
Spaces at the beginning of a line 
that are used to group together 
blocks of code. All consecutive 
lines of code at the same level of 
indentation are in a single code 
block.

Figure 3.1.2

Figure 3.1.1

Notice in Figure 3.1.1 that both print statements ran. That’s because the con-
ditional statement on line 4 said, “If this expression is true, run the indented code 
below.” When we change the results of the conditional statement by changing the 
values of myNum1 and myNum2, check out what happens in Figure 3.1.2.
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Here, the indented code on line 6 did not run because the conditional state-
ment was false (because myNum1 is now 3, not 1). In effect, the conditional state-
ment “controls” the indented line below it; that’s why we call it a control structure. 
However, the important thing to note here is that the non-indented line of code 
(line 8) did run. It’s outside the indentation, so it executes regardless.

This applies to multiple indented lines as well. None of the indented lines in 
Figure 3.1.3 executed. They are one code block that runs only if the conditional 
statement is true. This organizational method applies to every code structure we’ll 
talk about in this chapter: conditionals, loops, functions, and exception handling all 
group together code through indentation, and all mark their blocks of code with a 
colon at the end of the preceding line (here, if myNum1 < myNum2:).

Figure 3.1.3

Figure 3.1.4

Nested Indentation
Indentation can be nested as well; this is how we create nested conditionals or nested 
loops. Look at Figure 3.1.4, with three numbers.

Line 9 is also indented under line 5, so line 9 is controlled by line 5. Here, the 
conditional statement in line 5 is True, so the computer reaches line 9. The condi-
tional statement in line 9 is also True, so the computer runs line 11. Notice what 
happens if the conditional statement in line 5 is False when we switch myNum1 and 
myNum2  in Figure 3.1.5.

myNum1 is still less than myNum3, so if the computer had reached line 9, it would 
have evaluated to True and printed line 11. However, line 9 is controlled by line 
5, and line 5 was False, so the computer skips over the indented block (lines 6 
through 11) containing line 9 and just runs the print statement in line 13.
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4.  Scope
Nearly every programming language has some concept of scope. Scope most often 
describes what portions of a program can see a particular variable. It’s like your 
program’s short-term memory: what is it remembering at a given time? You can’t 
access something it’s no longer remembering. We can extend the idea of scope to 
functions, classes, and other advanced concepts that we’ll get to later, but most often 
for our material, scope refers to which parts of a program can see the variables that 
you’ve declared.

Examples of Scope
At a certain level, scope is obvious. You’re seeing code written on the page in this 
book. Can your code access the variables I’m writing here? Of course not (unless 
you copied the code into your code, but then it’s your code, not my code). What 
about if you have two code files on your computer; can one see the variables in the 
other? There may be ways to tell one file how to see the other, but that would have 
to be done explicitly; just having two files of code on one computer that mention the 
same variable doesn’t mean they’ll see one another.

So, a lot of time scope is pretty easily-defined. You expect the scope of your 
program to have an outer limit of all the code you’re running at a given time. That’s 
a characteristic of nearly every language I’ve encountered. A second aspect of scope 
is a little more complex, but still makes some logical sense: scope is often defined 
linearly. In other words, the computer doesn’t know what that a variable exists until 
it encounters it. If you create a variable named myVariable on line 10, you can’t 
refer to it until you reach line 10. The scope begins when the variable is first created.

Within these general limits, though, things can get a little trickier. Some lan-
guages behave differently. Most languages, however, use control structures to define 
scope.

Control Structures and Scope
So why do we discuss scope when we discuss our introduction to control structures? 
In many languages, control structures define the scope. A single variable usually 
“lives” within a control structure’s definition, and once the computer leaves that 
control structure, the variable is lost. In most (but not all) languages, this is espe-
cially true for conditionals and loops: the code inside of a conditional’s code block 
can see variables that were defined before the conditional, but the code that runs 
after the conditional can’t see any variables that were created inside its code block.

Why is this? The reason is that the computer can’t guarantee that the contents of 
a conditional statement’s code block actually ran. If you create myVariable inside 
some conditional, then the code outside the conditional doesn’t know that the line 

Scope
The portion of a program’s 
execution during which a variable 
can be seen and accessed.

Figure 3.1.5
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of code creating myVariable was ever run. myVariable might not exist. But this 
only applies to variables created inside the conditional; if a variable was created 
before the conditional, it can be referenced both inside and after the conditional. 
Some languages will let you use myVariable after the conditional’s code block 
anyway, but you risk causing an error.

Functions define scope even more narrowly. A function’s scope is, generally, 
just the variables sent to it or created within it. Functions don’t automatically see 
anything created before they’re run; they only see those things that are sent into 
them intentionally. Functions can see some variables that are defined even more 
globally—it’s possible to define variables in a way that forces them to be visible 
everywhere in a program. For now, though, we’ll focus on the more natural forms 
of scope. Don’t worry about understanding everything here right now, though; we’re 
just previewing the general idea of scope so we can return to it in each individual 
chapter of this unit.

5.  Scope in Python
Python’s scoping rules are actually simpler than many languages’. Part of this is 
because Python is an interpreted language, not a compiled language—it can live 
with certain things being unknown. Python doesn’t mind if it can’t tell if a line that 
creates a variable will be executed or not.

Simple Scope in Python
Let’s start with a simple example. Figure 3.1.6 is a revised version of the con-

ditional we saw in Figure 3.1.1. The revision makes one change: instead of print-
ing inside the conditional (the if statement), it saves the result to a string called 
result. It then prints result after the conditional has executed. What happens?

Figure 3.1.6

Well, myNum1 is less than myNum2, so the contents of the conditional on line 4 
run. The variable result is created, and it is then printed. Python didn’t care that 
result was created inside the conditional’s code block. This makes it different than 
many languages; many languages only define variables as existing within that code 
block.

In some ways, this makes programming in Python simpler. If we know that 
we’re going to create result at some point, we don’t have to worry about creating it 
at the wrong point. However, it isn’t all good news.

The Dangers of Scope in Python
Scope in Python also presents a danger. Take a look at the simple tweak in Figure 
3.1.7 to the code from Figure 3.1.6. All we’ve done is change the values of myNum1 
and myNum2 so that now the conditional statement on line 4 doesn’t trigger. That 
means line 6 never runs, which means result is never created. So, what happens 
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when we run this code? Line 8 gives us an error. It hits an error because result 
was never created because line 6 was never run. This goes back to the idea that a 
variable’s scope begins when it is created; if the variable is never created, it has no 
scope.

This is the danger of scope in Python. When everything is working correctly, 
scope in Python is relatively easy to understand because you can think of the control 
structures as just determining what lines of code run in what order; the result is those 
lines of code running as if they had been written that way in the first place. However, 
if a control structure is going to start interfering with whether or not variables get 
created, then you might run into some issues. 

You can avoid this by creating variables outside the control structures just in 
case, as shown in Figure 3.1.8. Here, we create result initially before the condi-
tional, so that even if the conditional doesn’t execute, result is still created. Gener-
ally, for our purposes, knowledge of scope is most useful in debugging; when you 
encounter errors, one of the first things to check is whether the error is due to scope 
problems. Are you trying to access a variable that was created inside a conditional 
that didn’t run? Then you have a scope error.

Figure 3.1.7

Figure 3.1.8

If you go into computing, one day you’ll learn other languages as well. This 
knowledge of scope will also be useful for that transition. When working in Python, 
we take this for granted because it makes scope relatively easy, but in many other 
languages, it’s a more significant topic.
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Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to: 

•	 Describe the structure of 
different types of conditional 
statements and their usage with 
mathematical, relational, and 
Boolean operators;

•	 Implement different types of 
conditional statements with 
operators and analyze the effect 
of conditionals on the scope of a 
variable;

•	 Write a script using conditional 
statements to control the turtle 
with user input.

3.2Conditionals

c h a p t e r 

1.  What Are Conditionals?
The term “conditional” comes from the idea that sometimes we want to run some 
code conditionally; in other words, we only want to run it if something is true. For 
example, if the user has modified a document since the last saved, then we want to ask 
them if they want to save before closing the program. If a user has entered a different 
password than the one saved, then we want to ask if they want to update the saved 
password. If a user’s bank balance is insufficient to cover a purchase or the retailer is 
not trusted, then we want to reject the purchase.

Modern programming couldn’t exist without conditionals like these. They’re a 
relatively simple principle (but don’t worry if you don’t get them at first), but they’re 
extremely powerful.

If-Then
The most fundamental form of conditional is the simple if-then statement. If 
something is true, then do something. We think in terms of conditionals every day. 
Consider:

•	 If it’s cold outside, then wear a long-sleeved shirt.
•	 If highway traffic is bad, then take surface streets.
•	 If you have a test tomorrow, then study.
•	 If you’re a vegetarian, then order the vegetarian entrée.

Each of these is easily phrased in terms of an if-then statement. You check if 
some condition is true, and if so, you take some action. The “action” could actually 
be several actions. You could imagine, for example, that if it’s cold outside, then 
you wear warmer clothing, start the car early so it can warm up, and makeg some 
hot coffee.

If-Then-Else
A slightly more complicated version of this includes a third part: an else. The else 
is a different series of actions to perform if the condition wasn’t true in the first 
place. With an if-then-else structure, you’ll always do one thing or the other.

We can rewrite our real-world examples above in terms of if-then-else:

•	 If it’s cold outside, then wear a long-sleeved shirt; else, wear a t-shirt.
•	 If highway traffic is bad, then take surface streets; else, take the highway.
•	 If you have a test tomorrow, then study; else, go to a party.
•	 If you’re a vegetarian, then order the vegetarian entrée; else, order the meat 

entrée.

Just like the original then, there could be multiple actions that follow an 
else. The else following the conditional on whether it’s cold outside could be: 
wear a t-shirt, make some iced coffee, plan to go to the park after school or work, 
and pack a water bottle. The important thing here is that if-else structures create 
two alternatives, one of which will always be chosen.

Conditional Statements
Programming statements that 
control what code is executed 
based on certain conditions; 
usually of the form “if”, “else 
if”, and “else”.

If-Then Statement
A conditional control structure 
that runs a block of code only if 
a certain condition is true.

Else Statement
A conditional control structure 
that runs a block of code if 
all preceding if-then and 
else-if statements have been 
false.
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If-Then-Else-If
Sometimes, though, our reasoning might be more complex. We might need multiple 
pathways depending on different checks. In this case, we might employ an else-if 
statement. Like an else, an else-if only runs if the original if-then did not. 
Unlike an else, however, an else-if has its own conditions to check; if the condi-
tions aren’t met, it doesn’t run either.

Consider this more complex version of our weather example: If it’s raining, 
then wear a raincoat; else, if it’s cold, then wear a long-sleeved shirt; else, wear a 
t-shirt. Here, we check two things: whether it’s raining, and whether it’s cold. If it’s 
raining, we don’t need to bother checking if it’s cold: we wear a raincoat regardless. 
Otherwise, or else, we need to check if it’s cold, and if so, wear a long-sleeved shirt. 
That’s what makes this an else-if: it only runs if the original if wasn’t true, but 
it still has its own conditions. 

Multiple Else-Ifs
We can chain together multiple else-ifs as well. For example, we could say: if 
it’s raining, then wear a raincoat; else, if it’s cold, then wear a long-sleeved shirt; 
else, if it’s hot, then wear a t-shirt; else, if it’s windy, then wear a jacket; else, wear 
a collared shirt. We must start with if, and we can have at most one else, but we 
can have any number of else-ifs in between. With this kind of structure, each 
else-if and else will only execute if no previous condition has executed. If it was 
cold, then this logic wouldn’t check if it was hot or windy. A collared shirt would 
only be the result if every previous statement was false.

This might be easier to visualize using a flowchart. From here, we can see that 
once one of the conditions is true, it changes our path and sends us to one of the 
results. So, we don’t even check the other questions because we’ve already reached 
our decision of what to do next. Flowcharts like this can be useful ways of planning 
out your code if you’re having trouble keeping track of it in text.

Else-If Statement
A conditional control structure 
that runs a block of code if all 
preceding if-then and else-if 
statements have been false and 
some other conditions are met.

Figure 3.2.1

If we wanted to guarantee we check multiple things, we would just put multiple 
if-then structures one after the other. For example, imagine we said: if it’s cold, 
then wear a long-sleeved shirt; if it’s raining, then wear a raincoat. With this logic, 
we could end up wearing both a long-sleeved shirt and a raincoat if it’s cold and 
raining; the second statement doesn’t begin with else, so this reasoning checks if 
it’s raining whether it’s cold or not.

Just as we didn’t have to end an if-then statement with an else, we also 
don’t have to end an if-then-else-if with an else. For example, consider this 
reasoning: If you have a test tomorrow, then study; else, if you have class early, then 
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go to bed early. If neither of these conditions is true, then this block doesn’t need to 
prescribe what you do. We can have an if-then-else-if without having a final 
else.

Conditionals Recap
So, to recap: our basic conditional structure is the if-then structure; it checks if 
some condition is true, and runs some code if so. We can augment our if-then 
structure with else-if and else. else-if checks additional conditions if the 
earlier ones were false. else always performs some actions if no previous if or 
else-if was true.

Right now, I would predict you feel like you kind-of get this and kind-of don’t. 
If you’re unsure, don’t worry. We’ve covered a lot in this lesson, but the remainder 
of this chapter is applying just these concepts to different contexts and combining 
it with what we learned last unit. If you find yourself stuck, try to think about the 
principles in terms of those real-world decisions instead of coding conditionals.

2.  Conditionals in Python
Now that we’ve covered the basic principles of conditional statements, let’s see 
them in action. To demonstrate these, let’s use the same running example. Imagine 
we’re writing some code that will make a recommendation for what someone will 
wear. Part of this reasoning will be receiving today’s weather as a string, stored in 
todaysWeather. Our code will print what the user should wear.

If-Then
Let’s start with the simple example: if it’s raining, then the user should wear a rain-
coat and rainboots. This reasoning is shown in Figure 3.2.2.

Figure 3.2.2

In line 3, we’re creating the variable to store todaysWeather; if we were 
actually developing a program to do this, we would probably load this value from 
the Internet, but for testing we would give it a value manually to test the rest of our 
code. Then on line 6, we use the relational equality operator, ==, to check if today-
sWeather is equal to “raining.” Here, it is, so “raincoat” and “rainboots” are printed 
from lines 8 and 10. What if todaysWeather didn’t equal “raining?”

In Figure 3.2.3, todaysWeather isn’t “raining,” so the conditional on line 6 
is false, and so “raincoat” and “rainboots” don’t get printed. Note the syntax in the 
code on line 6: we start with the word if, followed by a space. You might sometimes 
see it followed by an open parenthesis instead; either is fine. Sometimes parentheses 
will be used if the logical expression is more complex to make it easier to read, but 
for simple ones like this, parentheses aren’t necessary. Either way, we then put in the 
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condition we’re checking. You’ll notice we’re using the equality (==) operator we 
introduced last unit; conditional statements are a big reason why logical operators 
were so important. Finally, we end the line with a colon: a colon is Python’s sign 
that an indented code block is beginning.

The following line is indented, meaning that it is “under” or “controlled by” 
the conditional statement on line 6. The indented code is the “then” code; it’s the 
code that runs if the conditional is true. Anything indented directly under that con-
ditional statement will be controlled by that statement. Here, that’s why line 10 is 
still controlled by the conditional statement; it’s also indented under it. This is also 
why line 12 is not controlled by the conditional; it is not indented. So, even when 
the conditional on line 6 is false, line 12 still runs because it is not indented under 
line 6.

So, this is our fundamental if statement: the word if, some logical statement 
that resolves to True or False, a colon, and some indented code. Next, let’s make 
it more complex.

If-Then-Else
Right now, the code just checks if it’s raining, and recommends a raincoat and 
rainboots if so. Let’s say that if it’s not raining, we want to recommend a t-shirt and 
shorts. How do we do that?

We add an else block, and under the else block, we place the lines of code 
to print “t-shirt” and “shorts.” In Figure 3.2.4, todaysWeather does not equal 
“raining,” and so the conditional on line 6 is False, and the code it controls 

Figure 3.2.4

Figure 3.2.3
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does not run. The else code runs if the corresponding conditional statement was 
False, so here, the else code block (lines 12 and 13) runs and prints “t-shirt” 
and “shorts.”

Notice the syntax in line 11, it’s important to get this right: the keyword else 
must be at the same level of indentation as the original if; this is what tells Python 
which else corresponds to which if (which will matter later in this chapter). 
Logically, this makes sense: the else block code runs if the if block code did not 
run; if else was part of the if block code (that is, indented under it), it wouldn’t 
run either! As before, else must also be followed by a colon, Python’s sign that an 
indented code block is beginning.

What happens if the first if statement was true? Then the code under the if 
statement runs, as shown in Figure 3.2.5. The else code block only runs if the 
if code block did not run, and so here, the else code does not run. The final 
line that prints “Done!,” however, lies outside either code block, so it runs in both 
Figure 3.2.4 and 3.2.5.

Figure 3.2.5

If-Then-Else-If-Else
Now let’s throw our else-if statements into the mix. We’ll start with just two 
checks: raining or cold.

The majority of the code in Figure 3.2.6 is the same as the code from Figure 
3.2.4, but we’ve put something in between the if and the else. Line 9 is nearly 
identical to the original if in line 5, but it starts with a slightly different keyword: 
elif. This is Python’s keyword for else-if. Other than the “el” at the beginning, it 

Figure 3.2.6
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perfectly matches the original if. The only necessity for an elif statement is that 
it must come after an if and before any else at that level of indentation. And, as 
we said before, we can have more than one, as shown in Figure 3.2.7.

Figure 3.2.7

Figure 3.2.8

How does the code in Figure 3.2.7 run? First it creates todaysWeather on line 
2 and gives it the value “windy.” Then it checks on line 5 if todaysWeather equals 
“raining.” It doesn’t, so it skips the conditional’s code block (lines 6 and 7). Then it 
checks the first elif on line 9. todaysWeather doesn’t equal “cold,” so it skips 
this code block (lines 10 and 11), too. Then it checks the second elif on line 13. 
todaysWeather does equal “windy,” though, so it runs the contents of that code 
block (line 14) and prints “jacket.” Now that one of the parts of the if-then-else-if-
else block has run, it doesn’t check the rest. From the start, it goes to the first True 
conditional it finds, runs its code block, and skips the rest. In this case, that means 
it skips the elif on line 16 and the else on line 19.

We can preview a later lesson to examine this; later, we’ll talk about using 
operators along with conditionals. The code in Figure 3.2.8 approaches the same 
issue twice; note the difference.

In Figure 3.2.8, we’re trying to print “scarf” if it’s cold and “jacket” if it’s 
either cold or windy. In the first segment (lines 4 through 10), what happens? The 
conditional on line 5 triggers (or is True), so its code block runs and prints “scarf.” 
The second condition (on line 8) is an else-if, so it doesn’t trigger if the first one 
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runs. So, even though the condition in the elif statement is true, it doesn’t run 
because the first if ran. It’s an else-if; it only runs as an alternative to the preceding 
conditionals.

In the second segment (lines 13 through 17), we resolve this. Instead of making 
it an elif, we just make it another if. It’s not indented under conditional begin-
ning on line 13, so it runs either way. The second segment checks both conditionals 
because neither one is an else-if for the other. So, only use else-if if you want 
the conditional to be skipped if a previous part of the structure was true.

Common Errors
Finally, note that a common error in programming conditionals is to “orphan” the 
else or the else-if conditionals, as shown in Figure 3.2.9.

Figure 3.2.9

The code in Figure 3.2.9 code gives us a SyntaxError. Why? Between the 
elif on line 9 and the if on line 5, there is a line (line 7) at the same level of 
indentation as the if. That breaks the code block of the if on line 5. The elif on 
line 9, however, has to follow an if; or more specifically, must immediately follow 
the indented code block that follows an if. As far as Python is concerned, the elif 
on line 9 is orphaned; it has no corresponding if because line 7 broke the code block 
of the if on line 5. The same occurs on line 11 before the else, which similarly 
must follow an if or elif block directly.

3.  Conditionals and Operators
We’ve already seen that conditional statements usually use logical expressions built 
around logical operators to decide what to do. This isn’t always the case; sometimes 
we might store the result of a logical expression in a boolean, and simply use that 
boolean inside the conditional instead of the expression itself. Either way, though, 
conditionals are often used with logical expressions in some way.

So far, we’ve only looked at the equality operator. However, conditionals are 
used in other ways as well.

Relational and Mathematical Operators
In addition to the equality operator (whether used mathematically or more generally 
with strings), it is common to use the other relational and mathematical operators 
with conditionals. We’ve covered one example several times: comparing bank bal-
ances. That is a relational expression that would generate True or False based on 
whether one number is greater than another.

We can embed other mathematical operators within these statements as well. 
For example, if we wanted to compare a person’s bank balance to a purchase price 
plus its sales tax, we could perform that mathematical operation right there within 
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the conditional rather than performing it separately and storing it for later compari-
son in a conditional.

Boolean Functions
We’ve mentioned functions a few times now; we’ll get to them more later, but for 
now, we know that functions are like custom, more complex operators that take 
some input and return some output. For example, we’ve mentioned before that some 
languages (such as Python) have a len() function before, which takes as input 
something with a length (like a string or a list of items) and produces as output the 
length of that input (like 12 when the input is “Hello, world”).

Functions can return booleans as well, which means we can use functions 
in conditionals. For example, we could have a function that takes a filename and 
checks if the file exists. So, our conditional would basically say, “if this file exists, 
then…” A lot of the complexity and power around conditionals comes when we start 
writing custom functions to return booleans.

Boolean Operators
Finally, boolean operators allow us to take other operators and functions and 
combine them into far more complex conditionals. We can check multiple different 
conditions, or multiple combinations of conditions. We could have very complex 
statements, although in practice we generally want to break complex conditionals 
down into multiple, simpler, nested conditionals.

Returning to our weather and clothing example, we would likely have certain 
articles of clothing that are worn in multiple kinds of weather. We might wear a jacket 
in either cold or windy weather, for example. Boolean operators would let us check 
either of those conditions within a single line: if cold or windy, then wear a jacket.

4.  Conditionals and Operators
Let’s take a look at some of the ways we can use conditionals along with operators 
in Python. We’ll keep these examples simple: mostly if-then-else statements 
and few elif statements, but note that these can be combined with the advanced 
structures covered above.

Relational Operators
We’ve covered before the simple way we can use relational operators in condition-
als, but let’s look again. What if we wanted to check to see if a buyer has enough 
funds on a card to make a purchase?

The greater-than-or-equal-to operator returns True if the first number is greater 
than or equal to the second, False if it is not. Since it returns True or False, 
we can use it in conditional statement in line 8 of Figure 3.2.10. Here, we see that 

Figure 3.2.10
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balance is greater than purchasePrice, so the operator returns True, and the 
code block under the if statement runs.

Relational and Mathematical Operators
On their own, mathematical operators return other numbers, so they can’t be used 
on their own in a conditional. The statement “if 3 + 5, then…” doesn’t make sense 
because 3 + 5 returns 8, not a True or False.

However, we can use mathematical operators along with relational operators. 
Imagine in our above example if we wanted to compare the balance to the purchase 
price with sales tax. How would we do that?

In Figure 3.2.11, we’ve created a variable salesTax and given it the value 1.08, 
which mathematically is the multiplier for an 8% sales tax. Then, in the conditional, 
we multiply purchasePrice by salesTax. The computer automatically does this 
before checking the relational operator because of its internal order of operations. In 
this way, we can use mathematical operators within conditional statements.

Figure 3.2.11

Set Membership Operators
You might remember that one of the things that makes Python unique is easy access 
to functions that check if something is a member of another set. So, where many 
languages would have this next example as an example of a boolean function, in 
Python it’s a unique kind of operator.

Figure 3.2.12 shows a more complicated check for weather and clothing. 
Instead of checking each type of weather one-by-one and printing the correspond-
ing articles of clothing, we could instead create lists of the weather conditions for 
each piece of clothing. On line 2, we see one of them: jacketWeather is a list of 
types of weather that suggest the user should wear a jacket: cold, windy, raining, 
and snowing.

Figure 3.2.12
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The conditional on line 7 checks to see if todaysWeather is one of the items 
in jacketWeather, and if so, prints jacket on line 8. If we wanted to add another 
weather condition to the list of conditions that dictate wearing a jacket, we just have 
to add it to the list jacketWeather. Similarly, we could have lists like this for 
jackets, scarves, t-shirts, etc., and easily check them. Note that if this is confusing, 
don’t worry: we haven’t gotten to lists yet. Python’s syntax is accessible enough that 
you might understand this just based on the natural meaning of the word “in,” but 
don’t worry if that’s not the case. We’ll talk more about this later.

Boolean Functions
If a function returns a boolean, then we can use it in a conditional statement. For 
example, in Python, there is a function (well, technically a method, but don’t worry 
about the difference for now) called isdigit() that returns True if the string rep-
resents a number, False if it does not. Figure 3.2.13 shows this in action.

Figure 3.2.13

You might initially be confused about why isdigit() is after the variable 
name (myNumericString.isdigit()) instead of the way we’ve seen functions 
before (isdigit(myNumericString)). The reason for this is that it’s a method, 
not a function—but again, we’ll get to the difference later. For now, just know 
that myNumericString.isdigit() returns True if myNumericString is a 
number, False if it is not; and, any string can use .isdigit() the same way.

So, within the conditional on line 5 of Figure 3.2.13, we have myNumeric-
String.isdigit(). “12345” is  all numbers, so the conditional on line 5 is True, 
and so it prints on line 6 that the string is numerical. The function (well, method) 
returns True, so the conditional is true, so the first code block runs. In lines 10 
through 13, the opposite happens: “ABCDE” is not numeric, so the conditional is 
False, so the second code block (line 13, after the else) runs instead. If you’re 
curious, there are similar methods for checking if a string is all letters (.isalpha()), 
all letters or numbers (.isalnum()), all lowercase (.islower()), all uppercase 
(.isupper()), or all whitespace (.isspace()).

Boolean Operators
Finally, our boolean operators—and, or, and not—can be used to combine any of 
these logical expressions together. Let’s look at this with two examples: a simple 
one from our weather example, and a complex one from our purchasing example.

Figure 3.2.14 is a simplified version of one of our previous examples of elif, 
this time using just one if. Here, the conditional checks if todaysWeather is 
either cold or windy. Note the syntax here: to check if one or the other is true, we 
simply put the word or between the two logical expressions. Here, the first one 
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evaluates to True and the second one evaluates to False, and True or False 
resolves to True: it’s true that the weather is either cold or windy. 

Now let’s try a more complex example. Previously, we’ve mentioned in the 
context of our purchasing code the idea of checking several conditions: Is the 
balance sufficient? Is the cardholder the person making the purchase? Is the vendor 
a trusted vendor?

Figure 3.2.16 shows a complex chunk of code that tests this. We’re putting 
together three logical expressions in one conditional with a pair of and operators. 
We check if the balance is greater than the purchase price plus sales tax, and the 
cardholder is the current customer, and the vendor is a trusted vendor. Only if all 
three of those things are True do we approve the purchase.

This can get even more complicated. We might have logical expressions with 
boolean operators within the larger expression. Observe Figure 3.2.17 and note how 
it runs.

Figure 3.2.14

Figure 3.2.15

In Figure 3.2.15, had we used and instead of or, then the conditional would 
have been False. It would not be true that todaysWeather equals both “cold” 
and “windy” (and in fact, the way we’ve written this, that would be impossible since 
“cold” == “windy” itself is False).

Figure 3.2.16
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Figure 3.2.17

First, a syntactical note. The conditional statement on lines 18 and 19 looks 
weird, doesn’t it? It ends in a slash, the next line is double-indented, and the colon 
isn’t until after line 19. In Python, this is how we tell the computer, “Interpret these 
two lines as one line.” Breaking the code between two lines makes it more readable 
for us as humans, but the computer needs to see it as all one line. So, this line lets us 
do both. The slash says, “Copy the next line, and put it where this slash is.”

Anyway, on line 13 we’ve added an additional variable: overdraftProtec-
tion. Overdraft protection (for this example, anyway) allows the customer to 
charge more than their balance and pay it off later. If it’s available, then it doesn’t 
matter if the balance is greater than the purchase price. So, here we have a nested 
or within our longer and statements. The computer should evaluate whether the 
balance is sufficient or overdraft protection is available. If either is True, then the 
first part of the condition is True.

Note that we put parentheses around this or expression on line 18 to force the 
computer to evaluate it first. In this case, we didn’t actually have to. The computer 
will automatically evaluate logical operators from left to right. However, it’s always 
good to use parentheses for human readability, as well as for safety. For example, if 
we had put the or expression at the end without parentheses, it would have changed 
the results. So, it’s always good to use parentheses to be clear on the order in which 
things should be evaluated.

As we said before, we could take these principles and combine them with the 
complex if-then-else-if-else statement structures from earlier.

5.  Nested Conditionals
In our example of evaluating whether a purchase would be approved, there was a 
weakness. We evaluated whether or not multiple conditions were all true, and if they 
all were, then we approved the purchase; if not, we rejected it. However, this doesn’t 
tell us why the purchase was rejected. We know that if it was approved, all the condi-
tions were true, but if it was rejected, we don’t know which part caused the rejection. 
We can resolve this by using a more complex structure: a nested conditional.

Nested Conditionals
A nested conditional isn’t a special type of control structure like else-if or else. 
Rather, it’s just one way of applying an existing control structure. If a conditional is 
true, it runs the code block that the conditional controls. That code block can be any-
thing we want it to be, which means that code block can itself contain conditionals.

Nested Conditional
A conditional statement that is 
itself controlled by another condi-
tional statement. More simply, an 
if-then statement within another 
if-then statement.
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Our original reasoning was, “If the balance is sufficient and the customer is the 
cardholder and the vendor is trusted, approve the purchase; if not, reject it.” We can 
revise this reasoning a bit to allow us to make decisions based on those individual 
conditions. This is a bit difficult to explain in paragraph form, so if this is confusing, 
don’t worry; we’ll use a flowchart in a moment, then code. We might say instead: 
if the balance is sufficient, check the cardholder; else, reject because of insufficient 
balance. If the cardholder is the customer, check the vendor; else, reject because 
of invalid cardholder. If the vendor is trusted, then accept the purchase; else, reject 
because of untrusted vendor.

Nested Conditionals in a Flowchart
If that was confusing, don’t worry: this kind of branching reasoning is tough to 
explain in linear text.  Instead, let’s take a look at two flowchart views of this.

Figure 3.2.18

Figure 3.2.19

Figure 3.2.18 was our original approach: one big decision with multiple condi-
tions. If all are true, we go one way; if one is false, we go a different way.

Figure 3.2.19 is our new approach. Each individual decision is separate. If one 
is True, we go on to the next decision; if one is False, we go to the dedicated 
output for that decision. Each conditional governs whether we move on to the next 
conditional or just exit. In some ways, this is similar to the else-if; however, 
where an else-if only runs if the previous if was False, a nested if only runs 
if the previous if was True because it’s part of the code block that only runs if the 
if statement was True.
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6.  Nested Conditionals in Python
Let’s take a look at what our previous purchase validation code would look like with 
nested conditionals.

Ifs Within Ifs
Note that while one major benefit of nested conditionals is that we can take care of 
more combinations of conditions, another benefit is that in many ways, this code is 
more readable. Take a look at Figure 3.2.20.

Figure 3.2.20

Remember how we had to break one line of code between two lines just for 
readability in Figure 3.2.16? With these nested conditionals, we no longer have to do 
that. Instead, we have three short, simple conditional statements, one under the other 
on lines 14, 15, and 16. Each is indented under the previous one, meaning each only 
runs if the previous one also ran. That means the purchase is only approved if the 
first conditional and the second conditional and the third conditional are all True, 
which makes it functionally equivalent to our original statement.

However, with this structure, each individual conditional can have its own 
dedicated else block, meaning we can print exactly why the purchase failed. On 
line 8, I’ve changed the vendor to an untrusted vendor, and so the code runs until it 
checks the third conditional on line 16. This condition is False, so it jumps to this 
conditional’s else block (line 19) and says the vendor was untrusted. This tells us a 
lot more than our earlier code: it tells us the vendor was untrusted, and the fact that it 
reached this line also tells us that both the balance was sufficient and the cardholder 
was valid because this conditional was controlled by those previous conditionals.

Ifs Within Elses
This nesting applies on both sides of the structure as well. We can write code that is 
functionally equivalent to the above with a completely different structure by nesting 
our conditionals in the else blocks instead. Check it out in Figure 3.2.21.

This code performs exactly the same, but all the nesting is inside the else por-
tions of the conditional. That’s because instead of checking whether the purchase 
passes each requirement on lines 15, 18, and 21, it checks whether the purchase 
fails each requirement; notice how the logical expressions have changed compared 
to Figure 3.2.20. If the purchase fails a condition, it prints that it’s failed and why; 
if not, it moves on to the next check. This is like saying that a purchase is approved 
if none of the checks fail, rather than if all of them pass: these mean the same thing, 
but they’re organized a little differently.
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Figure 3.2.21

7.  Conditionals and Scope
We used conditionals as our example for scope in the previous chapter, so you’ve 
already seen a bit about how these interact. Now that you know what conditionals 
are, however, let’s revisit this. In Python, the scope of a variable starts when it is 
created, and ends when one of a number of terminations happen. For now, the only 
termination you need to know is the program ending: when the program ends and 
closes, the computer forgets the variables that were created while it was running. 
There are other times when the scope of a variable ends or is suspended, but for now, 
you only need to worry about the scope ending when the code ends.

Accessing Variables within Conditionals
So, let’s return to our earlier example of scope in a conditional now that we know 
what conditionals are, shown here in Figure 3.2.22.

Recall that this code creates the variable result outside the conditional. The 
scope of result is from line 4 until the program stops running. So, when line 6 
inside the conditional comes up to change the value of result, result is still 
available. This line is within the scope of this variable. Within what we know now 
(and what we’ll learn until we get to functions), the scope of a variable is from the 
point at which it is created until the end of the program.

Figure 3.2.22
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Creating Variables within Conditionals
Note, however, that there is a risk. Imagine if you create a variable within an if 
statement’s code block, but then that code block doesn’t run. That means the vari-
able was never created, and so if you try to access the variable outside the code 
block, your code will crash. You can see this happening in Figure 3.2.23.

Figure 3.2.23

Figure 3.2.24

8.  Conditionals and Turtles
Now that we have conditionals at our disposal, we can really start to create a way for 
the user to control turtles with their input alone. Let’s create an interface with two 
possible commands the user can give: turn and forward. Let’s also assume the user 
is going to enter two such commands, so we’ll run the same code twice.

Turn and Forward
So what does this look like in code? It’s actually surprisingly short, as seen in Tur-
nandForward.py.

If we set the values of myNum1 and myNum2 such that the conditional doesn’t 
run and we don’t create result outside the conditional, then our code encounters 
an error. The scope of result is from the moment it is created until the end of the 
program, but if line 4 never runs, it is never created; so, when the computer tries to 
print it in line 5, it is out of scope.

The best way to resolve this, in my opinion at least, is to never create variables 
inside a conditional that will need to be accessed outside the conditional. In fact, 
most languages that I know of won’t even let you do what Python is letting you 
do here; Java, for example, defines a variable’s scope as the current code block, so 
once the conditional is concluded, the program forgets result altogether even if 
the code block ran. I, personally, recommend following that convention. There is 
another way around this issue, though.

If we really want to create a variable inside a conditional to use outside of it, 
the least we can do is create it within each branch of the conditional, including an 
else. The if-then-else shown in Figure 3.2.24 guarantees that either the if code 
block or the else code block will run. Since result is created in both, we guar-
antee result will have been created when we reach line 7. Again, I personally 
recommend that you avoid creating variables in conditionals that you need to access 
outside, but if you do, you can use this to guarantee they’re created.
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We let the user input two commands, and so we’ve copied all the code twice 
(and left the comments out the second time); later, we’ll learn how to do this more 
efficiently. For now, it means we’re mostly interested in lines 4 through 17; line 1 
just sets up our turtle, and lines 19 through 27 just repeat lines 4 through 17. So, let’s 
walk through this code piece by piece.

First, line 4 gets the command from the user as a string and stores it in command. 
Then, line 7 runs a simple logical expression for string equality to see if the 
command the user put in was “turn.” If so, then line 9 asks the user to put in an angle, 
and line 11 executes that turn.

If the user didn’t input “turn” as the command, then the code skips lines 9 and 
11 and checks in line 13 if the command was “forward.” If so, line 15 asks the user 
to input a distance, and line 17 executes the move forward. Then, lines 19 through 
27 repeat the process.

Notice a couple of things here. First, notice that this code reuses command 
in lines 19 through 27. There’s no need to create a second variable to store the 
command because the previous command will be overwritten. The same goes for 
angle and distance; if the user enters two forward commands, then distance 
in the first one will be overwritten the second time.

You can extend this code in a lot of ways: you could add more commands, for 
example. You can find the list of commands available for the turtle graphics package 
at https://docs.python.org/3.5/library/turtle.html.

Turn, Forward, or Error
However, with the current design of this code, what happens if the user enters invalid 
commands? Try running TurnandForward.py, but enter words like “up” and “down” 
instead of “turn” and “forward”.

What happens? Nothing! Why is that? Well, the words “up” and “down” (or any 
other words besides “turn” and “forward”) don’t cause any of the conditionals to 
resolve to True, so they’re skipped. In part, that’s a good thing: it means our code 
doesn’t crash if we enter invalid commands (as it will right now if we enter strings 
for angle or distance, but we’ll handle that later). But it’s also a bad thing: the 
user doesn’t know why the code doesn’t do anything! How do we repair this?

Simple! We just add an else at the end of each conditional that prints that the 
command was invalid, as shown in TurnForwardorError.py. For usability, it’s good 
to give the user feedback on what exactly they could have done as well, so we print 
the commands the code could have understood, “turn” and “forward”. So, this is one 
way we can improve this code.

There remains lots of room for improvement in this code, of course. For one, 
why only execute two commands? With these two commands alone, the user can 
only ever draw a single line in one direction. Would it be better for the user to be able 
to execute as many commands as they want until they choose to exit? We’ll cover 
that when we come to loops next lesson. Second, why only these primitive little 
options like “forward” and “turn?” Wouldn’t it be nice if we could have singular 
commands for “octagon” or “star?” We’ll cover that when we come to functions. 
Third, the code crashes if the user doesn’t put in a valid number for “distance” or 
“angle.” Wouldn’t it be better if it gave them feedback the way it does if they enter 
an invalid angle? We’ll cover that when we come to error handling. By the end of 
this unit, you’ll have a script that can run any number of user-inputted commands, 
and the ability to write custom commands like “octagon” yourself!
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123

Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to: 

•	 Describe the concept of loops and 
analyze the usage of for loops 
and while loops in different 
situations;

•	 Write different types of loops, 
including for loops with known 
and unknown ranges, for-each 
loops, while loops, infinite 
loops, and nested loops;

•	 Use continue, break, and 
pass keywords with loops and 
define the scope of a variable in 
the context of a loop;

•	 Write a user-facing script for 
controlling the turtle graphics 
module using while loops and 
for loops.

3.3Loops

c h a p t e r 

1.  What Is a Loop?
What is a loop? A loop is a control structure that repeats some lines of code until a 
certain condition is met. The important word there is: repeats. A loop repeats lines of 
code. This is extremely valuable. Most trivially, it means that we don’t have to just 
copy and paste chunks of code if we want to do something more than once: but that’s 
only a small part of the power of loops. Their real power is their ability to repeat code 
a dynamic number of times based on some conditions.

For example, imagine if you were writing some code to change the names of all 
the files in a folder. The code for changing the name of each file is probably pretty 
similar, and you just want to repeat it for each file in the folder. With loops, it doesn’t 
matter if there are two files in the folder or two million: you could write code that 
would repeat the renaming function for every file in the folder.

Generally speaking, there are two common kinds of loops: for loops and 
while loops. They do have some variations within each type as well, but these are 
the most common categories of loops. As we’ll describe later, anything you can do 
with a for loop, you can also do with a while loop; however, each one is better 
suited to certain kinds of tasks.

For Loops
A for loop repeats some code a certain number of times: “for 7 times, do this.” For 
example, imagine you have an exercise routine that has you do ten push-ups, ten sit-
ups, and five pull-ups. We could describe this in terms of three loops: the first would 
run ten times, and with each iteration of the loop, you run the function pushup(). 
Or, imagine you were shopping, and there were seven items on your shopping list. 
So, seven times, you (a) read the next item on the list, (b) walk to that item in the 
store, and (c) put the item in your basket. Those three tasks would run seven times; 
or, in other words, you’d “loop over” them seven times.

Sometimes, we’ll know exactly how many times a loop should run in advance. 
For example, imagine you were writing the code for a blog, and you knew you 
wanted to show ten posts on the front page. You might run a loop ten times that grabs 
the next posts and displays it. Other times, the desired number of iterations (i.e., 
repetitions) might vary. In that same example, imagine we want to show every post 
in the blog on one page. In that case, we’d run the same loop, where the number of 
times we run it equals the number of posts in the blog. As more posts are written, 
the loop will need to run more times.

Some languages, like Python, supply a special kind of for loop called a for-
each loop. for-each loops come from the observation that a large number of 
times that we use for loops, we’re looping over items in a list, like blog posts in a 
blog or items on a shopping list. These loops generally always take the same form: 
(a) we find the total number of items in the list and run the loop that many times, 
and (b) at the beginning of each iteration, we grab the next item on the list and store 
it in some variable. A for-each loop just simplifies this. Instead of saying, “for 
seven times, read the next item, go get it, and put it in my basket”, it’s like saying, 
“for each item, go get it and put it in my basket.” Functionally these are the same, 
but just a little easier to write and more natural to think about.

Loop
A programming control 
structure that executes a 
segment of code multiple times.

For Loop
A loop control structure that 
runs a block of code a predeter-
mined number of times.

Iteration
A single execution of a repeated 
task or block of code.
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While Loops
for loops run with some advanced knowledge about how many times the loop will 
run: “for 7 times, do this.” while loops, on the other hand, run while something 
remains true. For example:

•	 While the screw is still loose, keep screwing it in.
•	 While there is food on the plate, take a bite.
•	 While there are still emails in your inbox, read the next one.
•	 While there are still items on your grocery list, get the next one.

We mentioned earlier that anything we express in a for loop can also be 
expressed in a while loop, and we see that with this last example. We can think of 
this as, “do this for each item on my list,” or we can think of this as, “do this while 
there are still items on my list.” It’s also technically true that pretty much every 
while loop can be rewritten as a for loop, but in practice, usually this is far more 
of a hack than just a different way of approaching the problem.

Some languages, like Java, also have a special kind of while loop called a do-
while loop. We can think of the standard while loop above as a “while-do” loop: 
while a condition is true, do something. A do-while loop is identical, except that it 
guarantees the “something” will be run at least once: it does it before checking the 
condition the first time.

Notice also how while loops are heavily dependent on logical expressions, 
just like conditionals were. Just as we filled a conditional with a logical expression 
to decide whether to run its code block, so also we fill a while loop with a logical 
expression to decide whether to keep repeating its code block. In many ways, you 
can think of a while loop as a repeated conditional: it repeats while the condition 
is true, rather than running once if the condition is true.

2.  Traditional For Loops in Python
Let’s start with the traditional for loop. In practice, the traditional for loop is 
actually used less in Python than the for-each loop; however, in computing as a 
whole, the traditional for loop is probably more fundamental. In fact, technically 
Python does not even have a traditional for loop: even the for loops are technically 
for-each loops.

For Loops with Known Ranges
Let’s start with a loop where we know how many times we want to run it. Imagine 
we want to write a loop that will print the numbers from 1 to 10. How do we do that?

Figure 3.3.1 shows the syntax for this simple loop. Let’s walk through it part by 
part. First, just like we started with if to do a conditional, we start with for to do 
a for loop on line 2. Then, we define a variable name. Generally, self-documenting 
code is the goal, but we use loops so commonly that it’s not uncommon to use a 
single character—usually i or n—here. We call this the loop control variable.  

While Loop
A loop control structure that runs 
a block of code until a certain 
logical expression is satisfied.

Loop Control Variable
A variable whose value is the 
number of times a loop has run. It 
is used to check if the loop should 
keep running (e.g. if it has run as 
many times as it’s supposed to).

Figure 3.3.1
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This is a variable we’ll be able to access inside the loop to see how many times the 
loop has run so far.

Next, we see range(1, 11). This is a little confusing in Python, so I won’t get 
into the nitty-gritty of how exactly it works. All you need to know is that in this kind 
of loop, the first time it runs, the variable (in this case, i) will take the first number 
specified in range() as its value (in this case, the 1 in range(1, 11)). Then, each 
time the loop runs, the variable will increase by 1. The loop will stop running when 
the variable equals the second number (in this case, 11). Note that when the variable 
equals that number, it will not run the loop again; it runs until the variable equals the 
second number, not until the variable exceeds the second number.

Then, the for loop ends with a colon, Python’s indicator that some indented 
code block is coming. Then, each line of code indented under the loop statement 
will be run, in order, each time the loop runs. In this case, these are lines 3 and 4.

So, let’s trace this one. When the computer hits for i on line 2, it creates a vari-
able i. Then, it assigns that variable to the first number in the range; in this case, it 
assigns it to 1. It then checks to see if the number equals the second number. 1 doesn’t 
equal 11, so it runs the code and prints the current value of i, 1. When it’s done with 
the code block, it jumps back to the top and increments i. So, now i is 2. It checks to 
see if i equals 11. It doesn’t, so it runs it again, then jumps to the top and increments i.  
It continues like this until i equals 10. At this point, it prints i (10), increments i (to 
11), and checks if i equals 11. It does now, so it stops running the loop.

One interesting (but non-essential) note: if you modify i within the body of 
the loop, the modified value will be used for the rest of that iteration of the loop; 
however, when that iteration ends, it restores the previous value of i. The contents 
of the loop can’t control the loop itself. You likely won’t ever encounter this, but it’s 
an interesting idiosyncrasy of the Python language; in Java and other languages, the 
contents of the loop can control the loop itself.

range()
Takes as input two variables, a 
first number and a last number, 
and provides the list of numbers 
for a for loop to iterate over in a 
for loop.

Figure 3.3.2

For Loops with Unknown Ranges
One common use of the for loop is to average numbers. So, let’s try that out. Let’s 
write some code in Figure 3.3.3 that will have the user enter 10 numbers, and then print 
the average. We’ll start with a known range, but then we’ll look at an unknown range.

First, we need to create sum on line 2, outside the loop with a value of 0 since we 
haven’t started adding numbers to it. Interesting thought experiment, though: why 
do we have to create it outside the loop? Couldn’t we create it inside like declaring 
variables inside our conditionals? The reason is that every time the loop runs, we 
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need to set sum equal to the previous sum plus the new number; if sum didn’t exist 
before, there is no previous sum, and so the program crashes because we’re not in 
sum’s scope the first time it runs!

Figure 3.3.3

Figure 3.3.4

Then, we run the same loop we ran previously starting on line 4, 10 times. Each 
time, we get the next number from the user, store it in nextNumber, and then add 
nextNumber to sum. Really, we don’t even need nextNumber—we could add the 
input directly (after converting it to an integer). I’m using nextNumber here mostly 
to show off having multiple lines controlled by our for loop. Then, at the end, we 
print the sum divided by the number of numbers we added, 10.

However, what if we didn’t want to just average 10 numbers? What if we 
wanted to let the user decide how many numbers to average? We can do that pretty 
easily, actually: we just have to get the number from the user, then run the loop to 
that number instead of to 11:

In Figure 3.3.4, instead of just jumping straight to range(1, 11), we instead 
first prompt the user for the count of numbers to average. Then, we run the loop 
from 1 to numCount + 1—the plus 1 is so the loop runs the number of times the 
user inputted instead of stopping one short. Remember, a loop from 1 to 11 runs 10 
times, so if the user wants to run 5 times, we need a loop from 1 to 6.

3.  For-Each Loops in Python
As I mentioned earlier, I see for-each loops more commonly than I see for 

loops in Python. Python is specifically set up to make dealing with lists of items 
easier, and since so many for loops exist to iterate over lists of items, for-each 
loops are very common. We saw this in our examples above: two of our examples of 
for loops could be easily described as for-each loops:

•	 For each email in your inbox, read it.
•	 For each item on your shopping list, go get it.

These are a little simpler to write than the for loops that we saw earlier. A 
for-each loop runs the same way as a for loop, but it streamlines the process of 
creating a variable, getting the length of the list, and grabbing the next item during 
each iteration.

For-Each Loop
A loop control structure that runs 
a block of code a predetermined 
number of times, where the 
number of times comes from the 
length of some list and the items 
in the list are automatically loaded 
into a variable for usage in the 
block of code.

Iterate
To repeat code a number of 
times. For example, if a loop runs 
for each item in a list, the loop 
“iterates” over the list. Each time 
the code is repeated is a single 
iteration.
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For-Each and Lists
We haven’t covered lists, but you’ve seen them a couple times by now. We’ll cover 
them more in Unit 4. For now, though, let’s perform the same task as before, but 
instead of getting numbers one-by-one from the user, let’s have them provided in a list. 

In Figure 3.3.5, line 3 creates a list of numbers. The list is called listOf-
Numbers, and inside the brackets on the right, we list numbers separated by 
commas. The result is a list of 10 numbers, 91 through 100. We’ll talk about this 
more in Unit 4. As before, we then create sum and give it the value 0.

Figure 3.3.5

Figure 3.3.6

Line 6 is our for-each loop. Notice that it doesn’t use the word “each.” The 
computer knows this is a for-each loop because listOfNumbers is a list instead 
of a range. The computer infers from the context what it should do, like when it 
inferred from the data types we were using how to use addition and multiplication 
operators. Just like i took on each number in a range in a for loop, current
Number is given each value in sequence from the list.

So, let’s trace through this. On the first run of the loop, currentNumber is 
given the first value from listOfNumbers, which is 91. 91 is added to sum, which 
was previously 0. So, now the value of sum is 91. That iteration of the loop is now 
done. The code jumps back to the top, and currentNumber is now assigned to the 
next value on the list, 92. That value is then added to sum, so sum now equals 183. 
This continues for each item in the list. Then, the program prints sum divided by the 
number of numbers that were added, in this case expressed as the length of the list 
of numbers, or len(listOfNumbers)

To see the equivalence of these different types of for loops, note that the 
for-each loop in Figure 3.3.5 is identical to the for loop in Figure 3.3.6. In 
Figure 3.3.6, we run the for loop from 0 to the length of the list of numbers. We 
start at 0 because the computer sees the first item in the list as the “zeroth” item, for 
reasons we’ll describe in Unit 4. Then, for each iteration of the list, the first thing 
we do is grab item i (e.g., item 4) from the list, assign it to currentNumber, and 
then add currentNumber to sum. It works exactly the same, it just introduces 
some more manual work: we have to manually get the length of the list and the 
current number.
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For-Each and Other Types
We’ll use for-each a lot in Unit 4 because many of the data types we’ll discover 
are different forms of lists. Lists, tuples, and dictionaries are all data types that in 
some way implement a list-like structure. Another one, however, you’ve already 
seen: strings. Strings are, effectively, ordered lists of individual characters. So, we 
can use a for-each loop with a string as well.

For example, imagine we wanted to count the number of words in a string. We 
might infer that we can do that by counting the number of spaces in the string: the 
number of words should be the number of spaces, plus one. How do we do this?

In Figure 3.3.7, we’re doing something more complicated than what we’ve done 
before: we’re using a conditional inside a for-each loop. We check each character 
(currentCharacter) of the string to see if it equals a space on line 7; if it does, 
it increments numSpaces on line 8. Then, at the end on line 9, it prints numSpaces 
+ 1, which would be the number of words.

Figure 3.3.7

Notice a few things here. First, notice that technically, characters and strings 
aren’t different data types in Python. They are in many other languages, but in 
Python, a character is just a string with a length of 1. So, when it iterates over the 
characters in the string, it’s just iterating over smaller strings of length 1 that make 
up the bigger string.

Second, notice the nested structures here. The conditional on line 7 is inside, or 
controlled by, the for loop on line 5, so it’s indented under the for loop. Line 8, 
which increments numSpaces, is controlled by both the for loop (it could repeat 
for each character) and the conditional, so it’s indented under both (and double-
indented as a result).

Third, notice the explicit conversion in our print statement on line 9. Python  
won’t just add a number to a string, so we have to convert it to a string: 
str(numSpaces + 1). However, notice that we’re adding 1 to numSpaces right 
here inside the explicit conversion to a string. This isn’t changing numSpaces; if we 
printed it afterward, it would still equal 6. That’s because we’re not using the assign-
ment operator; we’re not saying numSpaces += 1, we’re just asking for the string 
version of numSpaces + 1. We’re saying, “what is numSpaces plus one?” instead 
of “set numSpaces equal to itself plus one.” Note that we can bypass this by using 
commas instead of addition signs: this tells Python to use the implicit conversion to 
a string instead, which is what we’ll usually use.

Fourth and finally, notice that this code doesn’t really work the way it’s intended 
to. It works when we have predictable strings, but it would generate a lot of wrong 
results. It would say an empty string has 1 word (0 spaces + 1 = 1 word). If a string 
had back-to-back spaces, it would assume there was a word between them even if 
there wasn’t. These are what we might call edge cases. They’re outside of what we 
usually expect, but when they happen, they demand some special processing. For 
example, to improve this, we might tell our code to ignore consecutive spaces, or 
assume the length of an empty string is zero words.

Edge Case
A rare situation that requires 
special processing to handle.
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4.  While Loops in Python
for loops run code blocks a certain number of times. This might be the number of 
items in a list, or a preset number of iterations. A while loop, on the other hand, 
runs some code as long as some situation or condition remains true.

Any of our for loops could have been rewritten as while loops. However, 
while loops are good for code where we don’t know how many times we’ll need 
to repeat in advance. For example, imagine we’re playing a number-guessing game 
with the user. We don’t know how many guesses it will take to get the correct 
number. So, we want to repeat while their guess is incorrect.

Simple While Loops
Let’s take a simple example of this. You might notice what we’re about to write is 
similar to something we wrote previously with for loops. That’s exactly right: any 
for loop can be written as a while loop. Figure 3.3.8 shows some code to count up 
to a number with a while loop.

Figure 3.3.8

On line 1, we create i and set it equal to 1. We need to create it in advance so 
we can check it when we get to the loop. Then we write our while loop. We start 
with the word while, which is a reserved word like if and for. We then write the 
logical expression that will control the loop. Notice this is just like an if statement: 
in many ways, a while loop is an if statement that repeats until the condition is 
False instead of just running once if it was True. As before, we end with a colon 
to mark off the code block the loop will control.

Inside the while loop, we print the current value of i, and then add 1 to it. 
So, let’s trace this code. When the program reaches the while loop the first time, 
i is 1, which is less than 11. So, it prints i (1), then adds 1 to i to make it 2. Then, 
it jumps back to the top and checks the logical expression again: is 2 less than 11? 
Yes, it still is. So, it runs the body again: it prints i, now 2, and then adds 1 to i, 
making it 3. It repeats this until i is 11. At that point, the logical expression is 
no longer true, and so it stops running. Notice that we increment i after we print 
it. If we incremented it first, the loop would run the same number of times, but it 
would print 2 to 11 instead of 1 to 10.

Notice how similar this is to our for loops. With our for loop, we noted that 
when the code jumps back to the top, it increments i or whatever variable we use to 
control the loop. Here, we increment i manually on line 5. We noted that whenever 
the code jumps to the top, it checks if i is still less than the second number in the 
range. Here, this check is what governs the while loop on line 3. So, anything a for 
loop can do, a while loop can do, too. A for loop—especially a for-each loop in 
Python—is just a little more efficient to write and often more natural to think about.
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While Loops and Number Guessing
Let’s try to create a small game using while loops. In this game, we’ll randomly 
generate a number from 1 to 100, and we’ll ask the user to guess the number. While 
their guess is wrong, we’ll give them feedback on which direction to guess and 
repeat until it’s correct. The code for this is shown in Figure 3.3.9.

Figure 3.3.9

We start with import random on line 1 just so we can get random numbers. 
You can read more about Python’s random library and what you can do with it at 
https://docs.python.org/3/library/random.html. Then on line 3, we create a random 
number from 1 to 100 using random.randint(1, 100). Here, that integer was 
81, but the user doesn’t know that initially. We then create userGuess on line 5 and 
give it the value 0; we use 0 because hiddenNumber is greater than or equal to 1, 
so using 0 guarantees that we won’t accidentally set userGuess to the right answer.

Then, we get started on the while loop on line 7. The while loop repeats as 
long as the user’s guess is not correct. Initially it’s guaranteed not to be correct, so 
the contents of the while loop definitely run the first time. It gets the user’s guess 
(for now, we assume the user correctly enters an integer), and runs a conditional on 
the guess:

•	 If the guess is too high, it prints “Too high!”.
•	 If the guess is too low, it prints “Too low!”.
•	 If the guess is neither too high nor too low, it must be correct, so it prints “That’s 

right!”

That’s the end of the while loop’s contents, so how does it know whether to 
repeat again? At the end of the loop’s contents, userGuess is whatever number the 
user entered. So, when the loop ends, it jumps back to the top, line 7. Then, it checks 
userGuess to see if it’s equal to hiddenNumber. If it is equal, then this statement 
is False because of the not in front, and so if it is equal, the loop will not repeat. 
If it’s not equal, the loop repeats again.

Infinite Loops
You might notice in the previous example that something risky could happen. What 
if the user never enters the right answer? What if they just enter “1” over and over 
and over again? The program will never end! Now what if instead of waiting on 
user input in the loop, the loop could just run as fast as it wanted? This is called an 
infinite loop: a loop that, by its design, will never end.

These are very easy to create. This simple loop in Figure 3.3.10, for example, 
will never end. We create i, our loop control variable, and assign it the value 1. 
Then, we create a while loop that repeats as long as i is greater than 0. Every time 
it repeats, we just print i. What will the result be here? Simple: it will just print 1 

random.randint(min, max)
Returns a random integer greater 
than or equal to min and less than 
or equal to max.

Infinite Loop
A loop that will never end because 
the conditions for ending the loop 
will never be met.
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over and over and over again, millions of times per second if our computer allows 
it. If the loop repeats so long as i is greater than 0 and the value of i never changes, 
then the loop will never terminate.

Infinite loops are errors, but they’re interesting errors in that they generally don’t 
give us any actual error messages. When we use a variable outside its scope or divide 
by zero, the computer tells us, “Hey, you can’t do that!” But when we have an infinite 
loop in our code, it just runs and runs and runs. If your code is complex, it can be 
tough to tell if it’s just running normally and taking a while, or encountering an infi-
nite loop. print() statements can help with this: if you use print debugging and see 
the same thing printed over and over again, it often means you’re looping over the 
same thing over and over. I can say, personally, I’ve done that many times, usually 
just by forgetting to add that last line that increments some loop control variable.

5.  Advanced Loops: Nesting in Python
We discussed previously that we can nest conditionals within one another. We 
can do the same thing with loops. We can have for loops inside for loops and 
for loops inside while loops. We can have while loops inside while loops and 
while loops inside for loops. We can have for loops inside while loops inside 
conditionals and conditions inside while loops inside for loops. Before this book 
becomes too much like a Dr. Seuss poem, let’s take a look at some examples.

Nested For Loops
Earlier, we used for-each loops to loop over lists of strings and characters in a 
string. Now, let’s try doing both at once. Imagine we have a list of strings of multiple 
words, and we want to count the words in the list. To do that, we need to iterate over 
each character in each string; there are two “each”es in that statement, which means 
two for-each loops.

Figure 3.3.11 shows the code that does this. First, in lines 3 through 5, note that 
we have another way to tell the computer to interpret multiple lines as one line for 
human readability. If we’re creating a list and separating our list items with commas, 
we can create a new line and continue the list. Python knows that the list isn’t over 
until it sees that closed bracket, so it knows we’re still creating the list—that lets us 
break the line up into multiple visual lines so that we can read it more easily.

Figure 3.3.10

Figure 3.3.11
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Starting on line 8, we loop over each of the strings in listOfStrings. Each 
time we loop, the next string in the list gets assigned to the variable current-
String. So, the first time this loop (the “outer loop”) runs, currentString is 
assigned the value “This is the first string.” The second time it runs, current-
String is assigned the value “This is the second string.” And so on.

Each time the outer loop iterates once, the inner loop on line 10 runs. This one 
iterates over each character in currentString. For each character, it checks if the 
character is a space, and increments numSpaces if so. Notice that numSpaces is 
created outside both loops. If we created it inside the inner loop, the code would run, 
but with each iteration of the outer loop, its value would be reset. So, by the end of 
it, we’d have a list of spaces in the last string, not all the strings.

After this code has iterated over every character in every string, it then creates 
numWords and sets it equal to numSpaces + len(listOfStrings) on line 15. 
Why does it do this? Recall that previously, we added 1 to numSpaces because one 
space meant two words. Here, that’s true for each string individually: each string’s 
first space suggests two words. So, we want to add one for each string in the list. 
Granted, there are other ways we could do this, too: we could run an additional 
for-each loop at the end to add 1 for each string, or we could simply add 1 to 
numSpaces each time the outer loop runs, assuming there is at least one word in 
the string.

Nesting Both Loops
The previous example showed nesting for loops (and as an added bonus, nesting a 
conditional inside a for loop). What about nesting while loops inside for loops, 
or for loops inside while loops? Let’s try that out. Let’s take our previous while 
loop-enabled number-guessing game and extend it to allow the player to decide in 
advance how many games they’d like to play. Note that we’re about to get pretty 
complicated, so if you find yourself confused, don’t worry: try to trace through the 
code line-by-line to understand how it’s running.

Figure 3.3.12

This code is shown in Figure 3.3.12. Notice a few things here: first, notice that 
we keep the import statement at the top. That’s a common convention, to put all 
the import statements at the top. For now, don’t worry too much about what these 
do: just know that sometimes with things like random and datetime, we have to 
import something before we can use it.

Second, notice that in my outer for loop on line 4, I’m running the loop from 
0 to numGames instead of 1 to numGames + 1. These will run the same number of 
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times, and if I don’t care to print or use the value of i inside the loop, the fact that 
it starts at 0 isn’t as confusing. Even if it was, I could simply print i + 1 whenever I 
wanted to use it to translate it from Python’s interpretation to ours.

Third and most importantly, though, notice that it took only two lines (lines 2 
and 4) of code to change this game from running once to running a user-defined 
number of times. In fact, we could have shrunk it even more to only one line; we 
could replace numGames in line 4 with the input function call itself. That’s the 
power of loops: tiny segments of code can radically change the behavior of the 
finished product.

This is still a little bit of an odd design, though. What if the user decides halfway 
through they want to quit? Or what if they reach the end and decide they want to 
keep playing? We can take care of that by switching this to nested while loops, as 
shown in Figure 3.3.13.

Figure 3.3.13

Instead of asking for the number of games in advance and running a for loop, 
we could instead ask the user at the end of each game if they want to continue. Then, 
we run a while loop while their answer to the final question is “y” for “yes.” To 
design it this way, we would set the initial value of keepPlaying to “y” on line 
2 so that the loop is guaranteed to run the first time. Other languages might do this 
with a do-while loop, which similarly guarantees the loop will run at least once, 
but Python does not have a do-while loop.

6.  Advanced Loops: Keywords and Scope in Python
Before we end our discussion of loops, there are two final things we should discuss. 
First, Python has a couple of additional keywords that govern loops. So far we’ve 
covered for, while, and in. We also have continue, break, and pass. In prac-
tice, these are used relatively rarely (in my experience, anyway), but they’re worth 
covering in case you come across them.

Second, we discussed scope earlier in our material. Scope is important for 
loops as well, so we’ll briefly discuss the scope of variables used in loops.

Advanced Loop Keywords
There are three final keywords with loops that are worth covering, although to be 
honest, I find relatively few opportunities to use these. They’re covered here for the 
sake of completeness, but don’t be surprised if you rarely see these in the wild.
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The first is the continue statement. The continue statement forces the 
current iteration of the loop to stop, skipping over any remaining code inside the 
loop, as shown in Figure 3.3.14.

Figure 3.3.14

Figure 3.3.15

If we replace the continue statement with a break statement, then just like 
before, the loop terminates before it prints i for the second iteration. Unlike with 
the continue statement, however, with break, the loop terminates altogether. It 
jumps straight to whatever line follows the loop’s code block, as opposed to back up 
to the loop itself. It breaks the loop.

Finally, the third advanced loop keyword we might use is the word pass. The 
keyword pass exists by necessity. How do you have a loop with an empty code 
block? A blank line isn’t interpreted as a line by Python; something needs to be there 
and indented. The keyword pass is simply what you put if you want to run a loop 
that does nothing. It can also be used when you want to run a conditional, function, 
or exception handler with no code block underneath it as well. Why would you want 
to do either of these things? That mystery is left to you, dear reader. (Also, we’ll see 
why later in this unit.)

Scope and Loops
Finally, we should briefly talk about scope in the context of loops. As we said with 
conditionals, the scope of a variable is the area of the program’s execution where the 

This code runs 20 times and prints the odd numbers. It does this by checking 
if i, the loop control variable, is even. If it’s even, it runs the continue statement, 
which skips the remainder of the loop’s code and continues to the next iteration. The 
keyword continue is used inside a loop’s code block to skip the rest of the code 
block for the current iteration, and return to the loop itself.

The second advanced structure is the break statement. Like the continue 
statement, the break statement forces the entire loop to terminate; it will not iterate 
any further even if the conditions governing the loop remain True, as shown in 
Figure 3.3.15.

134	 Chapter  3.3  Loops

12_joy8227X_ch03.3_p123–138.indd   134 11/29/16   9:54 AM



variable can be seen. In Python, a variable’s scope is effectively anything after the 
variable is created. It doesn’t matter if it’s declared inside a loop or outside a loop; 
anything after the variable is created is within the variable’s scope.

With conditionals, this presented a challenge if a variable was created inside 
a conditional, then referred to outside the conditional. If the conditional didn’t run 
(which, by design, it sometimes shouldn’t—if it always should, why have a condi-
tional?), then the variable was not created, and referring to it later would create an 
error. This isn’t as big a deal in loops. We rarely create loops that might not run at 
all. It can happen, but it isn’t a common decision in my experience.

However, loops create a different issue for creating variables inside loops. The 
first time you assign a value to a variable, Python creates the variable. The second 
time, Python just changes the variable’s value. That means if you create a variable 
inside a loop, then every time the loop runs, its value is replaced, as shown in Figure 
3.3.16. Many times that’s perfectly fine; if you only need the value of that variable 
within one iteration of the loop, then there’s no problem replacing its old value with 
the new one. 

Figure 3.3.16

7.  Loops and Turtles
Last time in our work with the turtles graphics module, we created a little segment of 
code that would allow the user to enter two commands (turn or forward) two times. 
That was rather limited, though: with only two iterations, we could draw at most one 
line in any direction. With loops, though, we’ve already seen how we can loop some 
code until the user is done. Let’s apply that to our turtles with a while loop, and 
then use a for loop to create an interesting portion of an image for the user to draw.

However, if you’re going to reference the variable outside the loop, usually it’s 
because you wanted that variable to persist across different iterations of the loop. If 
the variable was created inside the loop, then referencing it after the loop will just 
give you the value the variable received the last time the loop ran, which is rarely 
what we want. So, the same advice I had in conditionals applies here, too: generally, 
if you need to refer to a variable outside a loop, don’t create it inside a loop. Create 
it before the loop, as shown in Figure 3.3.17.

Figure 3.3.17
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While Loops for Repeated Commands
We noted before that it only took a couple of extra lines to make some code repeat 
with a while loop. We’ll see the same thing in WhileLoopsforRepeatedCom-
mands.py.

As we see, it’s actually far less code to loop over this with this while loop than 
it was to repeat it twice manually! After deleting the repeated code, we only made 
the following changes:

•	 Created command outside the loop on line 2 so we could use it in the loop’s 
logical expression. This way, the user just enters the command “end” to stop 
the loop.

•	 Add the while loop line to repeat until command is “end” on line 5
•	 Add a separate elif to check for “end” on line 21. We need this because oth-

erwise, if the user entered “end,” it would be caught by the else on line 24 and 
register as an invalid command. However, we don’t need to do anything inside 
that elif because the loop won’t repeat again if command is “end” (because 
of the condition for the while loop; we just have to prevent the else from 
running.

Interestingly, we could have also used break or continue where we use 
pass here. If the user enters “end,” our goal is to stop repeating the loop. Using 
break would force the loop to stop altogether. Using continue would skip the 
else (which wouldn’t run anyway) and return to the logical expression govern-
ing the loop, which would end the loop, too, since the command now is “end.” It’s 
important to note as well that we could restructure this loop to not have to use pass, 
continue, or break at all.

With this relatively simple change, we now have some code that will allow the 
user to keep entering commands until they type end. They could run 200 commands 
if they wanted to and draw pretty complex figures.

For Loops for Drawing Shapes
We’ve seen how a while loop can be used to let the user keep entering multiple 
commands. Now let’s see how we could use a for loop to create some more complex 
commands. We’re going to implement a shape command. A shape command lets the 
user enter a number of sides and a side length, and it will draw the regular polygon 
that they entered. If they entered 4 and 100, for example, it would draw a square with 
side length 100, starting from the current direction it’s facing. What’s remarkable is 
this actually won’t take many lines of code!

The results of this implementation are in ForLoopsforDrawingShapes.py. In six 
lines (not including comments), we created this ability. Let’s walk through them.

•	 In line 21, we check if the command entered was “shape,” just like the other 
commands.

•	 In line 23, we get the number of sides. For now, we just assume the user enters 
a valid number of sides (an integer greater than 2).

•	 In line 25, we get the length of each side. Again, we assume the user enters a 
valid number (any integer).

•	 In line 27, we run a loop for however many sides the user wrote. Here, we use 
a convention in Python: if we’re never going to use the loop control variable 
(what we usually call i), then we name it _, the underscore character. Python 
sees this just as a normal variable name, but visually, it’s a nice indicator to other 
humans that this variable is never used besides its role controlling the loop.

•	 In line 28, we simply move the turtle forward by the side length.
•	 In line 29, we use a little principle from math to complete our shape. To draw a 

complete shape, we need to rotate 360 total degrees. So, we divide 360 degrees 
by the number of sides, and rotate that length at the end of each side. This way, 
we’re guaranteed to draw a complete shape.
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With only these six lines, the user can now enter a number of sides and side 
length, and Python will automatically draw the corresponding shape. The code starts 
with the turtle in whatever direction it was facing originally, so we can rotate to draw 
shapes in different orientations. For example, if issued the command “turn” with 
angle 45, then “shape” with numSides 4 and side length 50, we’d draw a diamond 
with sides of length 50.

It’s cool that we can do that, but if we wanted to add a lot of commands like 
that, this code would get really long. It would get hard to differentiate the high-level 
organization from the details of drawing individual shapes or patterns. So, in the 
next chapter, we’ll talk about functions. Among several other benefits, functions 
are ways of separating out often-used code so that we can refer to it from different 
places without cluttering our code.
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Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to: 

•	 Explain functional programming 
paradigm analogically, including 
function definitions and function 
calls;

•	 Write functions and implement 
function calls, including those 
with return statements and 
different types of parameters;

•	 Recognize Python function errors, 
including parameter mismatch 
and scope errors;

•	 Equip their user-facing turtle 
script with functions to build more 
complex programs.

3.4Functions

c h a p t e r 

1.  What Is a Function?
A function is like a little program on its own. Like full programs, a function takes 
some input and produces some output. In that sense, functions are very simple. We 
could slap a function declaration (the line of code that tells the computer that the 
code that follows is a function) on top of any code we’ve written so far and call it a 
function. In fact, some languages (like Java) can’t do anything outside a function.

Power of Functions
Despite their simplicity, functions are extremely powerful. We’ve talked about 
loops, which let us repeat some lines of code without repeating them. A loop sat in a 
single place in our code, though. What happens if we wanted to repeat the same loop 
in two different places? We would have to just copy the loop’s code to the second 
place! Not only is that inefficient, it means that if later we have to change that code, 
we have to remember to change it in two different places.

Functions change that. Functions let us take some code and package it up into 
a mini-program. Then, whenever we need to use that code, we just “call” that 
function; to call a function means to use it in some other code. Take our running 
example of validating a purchase. Instead of having to put that long, complex series 
of conditional statements anywhere we need to validate a purchase, we could instead 
create a function named validatePurchase() and call that function whenever 
we need to validate a purchase. Inside that function would be the same conditional 
statements, but we would only need to put it in one place: once it was there, we could 
refer to it from anywhere else.

To be honest, this topic is probably my favorite topic in this entire book. Func-
tions are the first step that allow us to transition from the clever little bits of code 
we’ve been writing to writing real complete programs. In real programs, nearly 
every single segment of code will have a function call in it somewhere. The power 
of functions to support organization and reuse of code drastically increases what we 
can easily create.

Function Terminology: Calls and Definitions
Functions are likely the most complex topic we’ve discussed so far, and so they come 
with their own terminology. In order to discuss function terminology, let’s imagine 
a simple function for addition. The function would take as input two numbers, and 
produce as output their sum. This function is pretty trivial, but it will be useful to 
explain the concept: this function called add() will take two numbers as input, and 
return as output their sum. Notice that we’re describing this function the same way 
we described programming itself, lines of code that take in input and return output. 
Functions are like mini-programs, and we build big, complex programs out of lots 
of little simple “programs.” These little simple programs are functions.

We’ve already mentioned one term describing functions: a function call. A 
function call is the place where we actually use, or “call,” a function in our code. 
In our add() example, it’s the place where we say, “hey, add these two numbers!” 
You’ve no doubt seen function calls before in our material depending on the lan-

Function
A segment of code that 
performs a specific task, 
sometimes taking some input 
and sometimes returning some 
output.

Function Call
A place where a function is 
actually used in some code.
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guage. Things like printing text or converting between data types are often done via 
functions. These are function calls: you weren’t sure how the functions worked, but 
you didn’t need to know. To call the function, all you needed was to know what it 
would accomplish, what input to give it, and what to call it.

The opposite, in some ways, of the function call is the function definition, made 
of a function header and a function body. The function definition is what actually 
creates the function so that it can be called from other parts of code. It’s the place 
where we tell the computer, “Hey, if someone wants to add two numbers, here’s 
what input you’ll get, here are the steps to take, and here’s the result to give back 
to them.”

Going back to our analogy of functions as mini-programs, we can think of the 
function definition as the program’s code, and the function call as actually running 
the mini-program. Writing the function definition is like writing the code; it hasn’t 
run yet, but it’s there ready to be used. Calling the function is like running some 
code, and for that, you don’t necessarily have to understand how it works: you just 
have to know what it will do.

Parts of a Function Definition
The structure of function definitions differs from language to language, but most 
have some commonalities. First, most are made of a header and a body. The header 
names the function and states what input it will expect; the input is shown as a list of 
parameters. For a print() function, for example, the name is “print” and there is 
one parameter, the text to print. For our addition function, the name might be “add”, 
and it would have two parameters: the two numbers to add. In some languages, 
the function itself and each parameter will be given a type. This is all the function 
header: it defines the function as far as the rest of the program is concerned. It 
tells the rest of the program what name to call when it needs the function, and what 
information to pass along. That is all the rest of the program will need to know to use 
the function: it doesn’t have to know how the program works, it just needs to know 
what to call it and what to give it.

In most cases, the majority of the function definition is the code itself, called the 
function body. These are the actual lines of code that dictate what should be done 
when the function is called. These are the lines of code that would say, “Add these 
two numbers and store the result in sum, then return sum.” Generally, the function 
body isn’t seen by the rest of the code you’re writing outside the function. That code 
doesn’t need to see the body: it just needs to know what input to give and what the 
result will be. For our addition function, our main code doesn’t need to know how 
the addition function adds two numbers; it just needs to trust that it does so accu-
rately and returns the result.

The word return is key in that statement: it’s the other unique piece of a func-
tion. The return statement is where the function sends something back to the main 
program as output. When the code says, “Hey, add 5 and 2,” the function replies, 
“Hey, the answer is 7!” It returns its output, the number 7, to the main program. 
A return statement terminates that function and returns execution to the main 
program. When the addition function says, “Hey, the answer is 7!”, it’s done running.

So, these are the main parts of a function.

•	 A definition or header, which defines its name and what input it should expect. 
With our addition function, this might be the name “add” and the expectation 
of two numbers as parameters for input.

•	 A body, which are the actual lines of code that run when the function is called. 
With our addition function, this would be the lines of code to add two numbers 
and store the result.

•	 A return, which tells the function what to send back to the main program as 
output. With our addition function, this would tell the function to return the sum 
of the two numbers.

Function Definition
A segment of code that creates 
a function, including its name, 
parameters, and code, to be used 
by other portions of a program.

Parameter
A variable for which a function 
expects to receive a value when 
called, whose scope is the func-
tion’s own execution.

Function Header
The name and list of parameters 
a function expects, provided 
as reference to the rest of the 
program to use when calling the 
function.

Function Body
The code that a function runs 
when called.

Return Statement
The line of code that defines what 
output will be send back at the end 
of a function.
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Parts of a Function Call
Once we have that, we can call the function. Calling a function means that when our 
code reaches the line where we call the function, it jumps into and runs the func-
tion’s code. It runs the function’s code until it finds a return statement or the func-
tion otherwise ends, and then it returns and picks up where it left off in the regular 
code. So, in some ways, a function all is like saying, “Go to that other code over 
there, bring this input with you, and tell me what the output is!” The execution of 
the code then goes to the function, runs the function’s code, and returns to the main 
code with the output.

Figure 3.4.1

Figure 3.4.2

To call a function, we would write the function’s name, and then give it the input 
to provide the function’s parameters. We call the input provided in the function call 
“arguments.” This is nearly identical to variables and values. Variables are names 
that are assigned values. Parameters are variables specifically for a function, and 
they are assigned values, called arguments, when the function is called. In our addi-
tion example, the “addition” function had two parameters: addend1 and addend2. 
When we say “Hey, add 5 and 2!”, 5 and 2 are arguments, which are loaded into 
the parameters. So, when the function has the code addend1 + addend2, these are 
variables that are loaded with the values 5 and 2.

Arguments
Values passed into parameters 
during a function call. Essentially, 
these are the values assigned to the 
function’s dedicated variables (i.e., 
parameters).

Then, the function would return the sum, 7. This would jump the execution back 
to our main code, where the function call asking the function add() to add 5 and 
2 would be replaced by the value 7. These are the parts of the function call: calling 
the function by name and providing the arguments, and then being replaced by the 
output.

Note that not all functions in all languages have return statements; some might 
not need to return any output to the main program. For example, a function to save a 
document might not need to tell the main program anything, it might simply need to 
write to a file on its own. Similarly, not all functions require any input; for example, 
a print function might be called without any input, and the computer knows to just 
print a blank line.
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Finally, our notion of scope still applies to functions. In order to call a function, 
it must be within the scope of the code we’re writing. Different languages define this 
differently, but it’s worth keeping in mind.

2.  An Analogy for Functions
Functions are powerful, but complicated. They fundamentally change the way we 
think about programming. We’re no longer writing just linear sequences of instruc-
tions, with small branches or repetitions. Instead, we’re now structuring entire 
programs. When writing a function, we need to think about how it might be used 
by the rest of the program, not just what the needs are for our current line of code. 
The power of functions means that they’re critical to understand, but they’re also a 
fundamental change in how we think about structuring programs. As a result, they 
can be very confusing. So, I think it’s useful to think of functions with an analogy 
to an office.

Setting Up the Analogy
In this analogy, you’re the main code that’s running. You have a specific job. Func-
tions are your coworkers. They also have specific jobs. When you need a job done, 
you ask your coworker to do it. You might give them some information to do it with, 
and they might give you some answer back.

In this analogy:

•	 Your coworker is a function.
•	 Their name is a function name.
•	 The declaration by the company of what their job will be is the function 

definition.
•	 The information you give them is the input to the function.
•	 What they do on their own with that input is the body of the function.
•	 The result they return to you is the output of the function.

The Function Definition
Let’s use this analogy to actually define a function. You have a coworker named 
Addison. Your boss tells you that Addison’s sole job is to add two numbers, and 
to get him to do so, you should shout his name and the numbers. So, Addison (the 
person) is a function. “Addison” is the name of the function. The statement, “You 
can give Addison two numbers to add” is the list of parameters to the function. All 
this information is the function header. Addison knows how to add two numbers; 
that’s the body of the function. When he’s done adding them, he hollers back the 
answer; that’s the output of the function.

Note a few features of this analogy. First, note that Addison hasn’t done any-
thing yet. You’ve been informed of what he does, and how to get him to do it. You’re 
told that he adds two numbers, and you’re told that to get him to add two numbers, 
you holler his name and then the numbers you want him to add. This is all the defini-
tion, defining how the function is used.

Second, notice that you don’t know how Addison adds two numbers. Does he do 
it by mental calculation? Does he do it on paper? Does he use a calculator? You don’t 
know, and you don’t care. Remember, in this analogy, you’re the main program. You 
don’t need to know how Addison does his job. All you need to know is how to call 
him, what input to give him, and what output to expect.

The Function Call
So, you’re sitting in your office today, and you say, “Hey Addison, add 5 and 2!” 
That’s the function call: you call out to Addison to do something, and you give him 
the input into what he does. He expects two numbers as input, so you give him 
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two numbers; those are the arguments, and they go into his parameters (like values 
into variables). Addison hears the two numbers and adds them. That’s running the 
body of the function. It was defined before, but now it’s being used. You, the main 
program, don’t know what’s going on inside that function. You’re not sure if he’s 
adding mentally, using pen and paper, or using a calculator. When Addison is done, 
he hollers back, “7!” That’s the output of the function. Now, wherever you needed 
the result of 5 plus 2, you instead use 7.

Notice a couple of things here as well. First, when you hollered for Addison to 
add 5 and 2, your work stopped. You didn’t continue until you got the output back. 
In the same way, when a program calls a function, it hands control over to that func-
tion. It waits until the function is done running to continue.

Second, notice that we said Addison is in your office. You probably have other 
coworkers as well, and they might need numbers added, too. If the company didn’t 
have Addison, you could have added those two numbers yourself in your office, but 
then everyone in the office has to do their own addition. By having one coworker, 
one function, that can do it, everyone can just call him to do it. If he comes up with 
a more efficient way to do it, then everyone benefits instead of everyone having to 
learn the more efficient way themselves. If later we wanted to record every time 
he added two numbers, we would only need to ask him to record them instead of 
teaching everyone to record them. These are all connected to the benefits of using 
functions: by packaging code together and calling it when needed, we make it easier 
to revise and enhance our programs over time.

Bigger Functions
Now, of course, with addition this is almost a silly example. In practice, you 
wouldn’t write a function for addition (in fact, the addition operator is basically a 
function on its own), just as you wouldn’t have a coworker whose sole function is 
to add numbers. This has been a simple example, but you might be able to easily 
generalize it to more authentic applications.

For example, most mid-sized companies have a public relations person that 
handles press releases. When someone at the company has something to announce, 
they call the public relations person and give them the information to announce. 
Let’s call ours Riley. Riley is a function, her parameter would be the information 
to announce, and her function body would be the steps to announce it. Calling the 
Riley is calling the function, and providing the information is passing in the argu-
ment. This is a good example of a time when a function might not return anything: 
Riley’s job might not be to tell the coworker any result, but rather just to announce 
something to the world. Either way, though, this should make it more clear (a) why 
there is value in encapsulating this job within a particular person or function, and 
(b) what it means to say that you, when calling a function, don’t care how it works, 
just that it works.

We can also think of an example of a job that needs no input. For example, 
imagine you’re working at a retail store. A common question in such a store is, 
“What was today’s total sales?” A company might have a person whose job it is 
to tally that when needed. Let’s call him Terry. Terry would be the function, and 
Terry’s function body would be the steps to tally the sales, but they don’t have any 
parameters. Terry just automatically has access to the day’s sales. Asking Terry for 
the day’s sales numbers would be calling the function, but there would be no argu-
ments to pass in. Terry does return a value, though: the day’s sales. There might also 
be jobs that require no input and return no value; for example, Lola’s job might be 
to lock up at the end of the day. No input might be needed, and no information is 
returned, but a function is performed.

We’ve spent a very long time now just talking about functions in abstract terms. 
That’s because functions are not just another control structure; they’re an entire 
paradigm of programming. They’re a different way to think about structuring the 
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code that we write. So, it’s important to understand not just the syntax, but also the 
philosophy behind functional programming. The main takeaways of what we’ve 
discussed so far are:

•	 Functions are like miniature programs, with their own input and output, for 
tasks we need to do a lot.

•	 Functions are defined by a header that states their name and the input they 
expect, like a add() function having two parameters, addend1 and addend2.

•	 Functions possess a body that dictates what to do with that input and what 
output to return.

•	 Complicated programs are built out of lots and lots of smaller functions.

3.  Simple Functions in Python
Functions are a bit of a chicken-and-egg problem when learning to program. You 
must have defined a function to be able to call it, but you must be able to call a 
function to test defining it. So, where do we start? Fortunately, we’ve seen some 
examples of function calls already: len(), str(), and random.randint() for 
example. So, we’ve seen what’s involved in a function call. Let’s get started defin-
ing functions. First, we’ll define a very general function with no input or return, 
a function that just performs a task. Then, next lesson we’ll define a function that 
does return some value. Finally, we’ll define a function that has some parameters 
and returns some value.

The Function Definition
Imagine you’re writing some code that will be used by an online store that does busi-
ness in multiple countries. That means the web site must be able to show prices with 
local currency symbols. You generally only have your own local currency on your 
keyboard, though, which means accessing the other symbols could be frustrating. 
So, we want to write a function that will print out a certain local currency’s symbol. 
Let’s go with the symbol for Japanese yen, ¥.

To start with, let’s just write a simple function printYen() that will print the 
character ¥; no input, no output. How do we do that?

Figure 3.4.3

Figure 3.4.3 shows the code to print the character ¥. Let’s trace through it. 
Line 2 is the function header. It starts with the keyword def. The keyword def is a 
reserved word in Python for creating functions. Then, we have the function name, 
printYen(). Then, we have an open and close parenthesis. If we were defining 
parameters, they would go in these parentheses; even if we have no parameters, 
however, we have to leave these parentheses because they tell Python explicitly that 
the function needs no input. This is also why we often show function names with 
parentheses after them when referring to them; for example, “the len() function 
returns the length of a list.” Then, as with all other control structures, we end with a 
colon, telling Python to expect an indented line.
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Inside the body (the indented part, lines 3 and 4) of the function, we write the 
one line: print("¥"). Actually, we’re doing something extra: the , end = "" 
inside the print statement tells Python not to create a new line after printing like it 
usually does. We’ll talk about why later; for now, just know that including this little 
extra bit prevents Python from going to the next line, so the next thing printed will 
be on the same line. This is why 5 appears on the same line as ¥ in the output.

The Function Call
Then still in Figure 3.4.3, we’re back outside the function again. On line 7, we call 
the function: printYen(). Line 2 told the computer, “Hey, there exists a function 
called printYen(), so when it gets called, come up here!” So, when print-
Yen() is called on line 7, execution of the program goes to line 3, the first line 
inside the function printYen(). The computer runs line 3 and prints the symbol. 
That’s the end of the function, so it comes back out to the main program. Line 7 is 
now done, so it runs line 8, and prints the number 5. The result: the computer prints 
“¥5.” The number 5 is on the same line as the symbol ¥ because of the , end = 
"" part of line 7.

Notice a couple of things here. First, as we’ve said before, Python starts at 
line 1 and runs the lines of code one by one. That means, on line 2, it runs, def 
printYen():. What does running that line mean? Running that line on its own 
means remembering, “Hey, there exists a function called printYen().” The func-
tion doesn’t run; running this line merely defines the function. It’s the equivalent of 
you being told, “Hey, Addison adds two numbers”: you haven’t asked him to add 
two numbers yet, but you know he’s there. The program then skips any lines inside 
the function because the function hasn’t been called; it’s just been defined.

Then the program runs line 7. Line 7 says, “Hey, remember that function 
printYen()? Run it!” Now the program jumps to line 3, the first line inside 
printYen(), and runs it. The body of the code is run when the function is called, 
not when it’s defined. After it runs line 3, that’s the end of the printYen() method, 
so execution returns to where it left off in the main program. Line 7 is now done, 
so it runs line 8.

Notice that we’ve touched on the idea of scope for methods in this. The scope 
of the printYen() method begins on line 2 when it’s defined. So, anything after 
line 2 can see printYen(). Had we tried to call printYen() on line 1, it would 
have failed because printYen() wasn’t yet defined. This is different from many 
other languages, where the language goes through and compiles functions before 
trying to run the code.

4.  Functions with Returns and Parameters in Python
So, we’ve now seen the general syntax for defining a function: the keyword def, a 
name for the function, parentheses, a colon, then the function body. Now let’s add 
two layers of complexity to this: a return statement and some parameters.

A Function with a Return
The function we defined in Figure 3.4.3 is of limited usefulness. Chances are, we’re 
not usually trying to print the ¥ symbol to the console; we usually want to use it 
in some other program we’re writing. So, instead of printing it directly, we want a 
function that will return that symbol.

In Figure 3.4.4, we’ve changed line 4. Instead of printing ¥, we return it. What 
does this mean? It means that wherever we call returnYen(), it gets replaced by 
the string “¥”. That was our goal, after all: to make it so we didn’t have to keep going 
and finding the symbol. Now, instead, whenever we need to use it we can just call 
returnYen().
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Let’s trace through how this code executes. Just like before, when the computer 
runs line 2, it loads the knowledge of the existence of returnYen() into memory. 
Now it knows that if returnYen() is called, it should come back here and run 
this function’s body. Then, it skips line 4 because it’s in the body of the function, 
and the function hasn’t been called yet. Then, it runs line 7. Line 7 asks to print the 
output of returnYen() (again, without the linebreak). To do this, it has to call 
returnYen(). So, it does. Execution jumps to line 4, the body of returnYen(). 
Line 4 says return “¥”. This means that “¥” is sent back to the main program to 
replace the function call. returnYen() is replaced by the string “¥”. So, this line 
becomes print("¥", end=""), and so the program just prints ¥. Then, line 8 
runs and prints 5.

The outcome is exactly the same, but notice that this design means we could 
have used returnYen() in other ways. Specifically, we could cut the two print 
statements down to one, as shown in Figure 3.4.5.

Figure 3.4.4

Figure 3.4.5

Because returnYen() returns “¥” to replace the function call instead of just 
printing “¥” by itself, we can use it in other lines, too. In Figure 3.4.5, we’re using it 
to print the same text as before, but imagine using this to generate the price tag to be 
put into a web site, or the price listing for a pricing database. In those cases, having 
this kind of access is valuable.

A Function with a Parameter
The function from Figure 3.4.5 just returns the “¥” symbol. However, are we ever 
going to use this symbol without an amount of currency following it? …well, we 
might, but for a moment let’s pretend we won’t. So, instead of forcing the main 
program to always add the amount separately, why don’t we instead make this func-
tion simply return the string version of the amount of currency preceded by the ¥ 
symbol? To do that, we need to send in the amount of currency to use as input into 
the function, as shown in Figure 3.4.6.

We’ve updated the function definition and put some new information in the 
header: amount, in parentheses. amount is a parameter of this function. This is 
like creating a variable specifically for this function: inside the function body, we 
can refer to amount as a variable. The value for this variable is the argument passed 
into the function when it is called. So, when the computer runs line 2 and defines 
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the function, it defines it with the knowledge, “Hey, to call this function, you need 
to pass in one argument.”

As before, execution then skips line 6 because the function returnYen-
Amount() is being defined, not called. So, execution proceeds to line 7, where it 
prints returnYenAmount(5). 5 is the argument being passed into the function. 
So, the value 5 is assigned to the variable amount. This is just as if the first line 
of the function was amount = 5. Execution jumps to the body of returnYen 
Amount, which returns "¥" + str(amount). Since amount is 5, this resolves to 
“¥5”. So, the string “¥5” is returned and replaces returnYenAmount(5) in line 7. 
This line becomes print("¥5"), so the computer does so.

So far, all our arguments have been values themselves, but we can (and usually 
will) use variables themselves as arguments. In this case, the value of the variable 
becomes the value of the parameter. For example, let’s convert this to a user-facing 
program that asks the user to input the amount they want added to the currency symbol.

Figure 3.4.6

Figure 3.4.7

On line 6 of Figure 3.4.7, the user enters a number, when prompted by line 6 
and it’s stored in the variable inputAmount. The variable inputAmount is then 
used as the argument to the function returnYenAmount. This assigns the value of 
inputAmount to the parameter amount, to be used in the function returnYen-
Amount. So, in this case, the user types in 10, which is stored in inputAmount. 
inputAmount is then passed into returnYenAmount as an argument, meaning 
the value of inputAmount is assigned to the parameter amount. Now, amount 
in the function returnYenAmount has the value 10, so when return "¥" + 
str(amount) is called, it becomes return "¥" + str(10). This resolves to 
return "¥10", and so the function call is replaced with “¥10”.

A Function with Multiple Parameters
If a function is defined with multiple inputs, then it is assumed that the order of 
the arguments in the function call matches the order of parameters in the function 
definition. Let’s make our running example from Figure 3.4.6 a little more compli-
cated to check this out. Let’s write a function that doesn’t just handle the ¥ symbol, 
but the £ and $ symbols as well.

In Figure 3.4.8, we’ve revised the function definition to change the name (now 
currencyAmount) and have two parameters: currency and amount. The body 
of the function is a series of conditionals that checks to see if the currency is one of 
three expected types: JPY for Japanese yen, USD for US dollars, or GBP for British 
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pounds. If currency isn’t one of these, it simply returns amount as a string. Notice 
here how we have multiple returns, but only one will be reachable at a time based 
on the value of currency.

When we call the function, we now use two arguments: “GBP” and 5. The 
order of the arguments matches the order of the parameters, so the parameter 
currency receives the argument “GBP” and the parameter amount receives the 
argument 5. The body of the function runs, finding that currency == “GBP”  
is True, so it returns "£" + str(amount). This resolves to “£5”, so it 
returns the string “£5”, which replaces the function call. So, line 11 resolves to 
print("£5"), so it does so.

Before we move on, it is also worth calling attention to the subtle but pow-
erful structure here. We have the function print(), and we have the function  
currencyAmount(). The function print() takes a string as input and prints it. 
How, then, can print() take currencyAmount(), a function, as input? Remem-
ber, when we call a function, we effectively replace the function with its output, then 
run the line of code again. When we run print(currencyAmount("GBP", 5)), 
the computer starts with the innermost set of parentheses (which may be attached 
to a function) and evaluates it. Here, that’s currencyAmount("GBP", 5). After 
evaluating that function call, it is replaced by the string “£5”. Now, the computer 
tries the line again: print("£5"). There is nothing left to evaluate, so it just runs 
this line as-is. There are two important takeaways here: (a) function calls are effec-
tively evaluated and replaced by whatever they output, and (b) as a result, we can 
use function calls as arguments to other function calls as long as they will output the 
right kind of data. Later, we’ll even look at functions that use themselves as argu-
ments, like reprint(reprint("WHAT?!")).

5.  Common Function Errors in Python
We’ve covered how functions are defined and called; now let’s discuss some of the 
function-specific things that can go wrong. All of the errors we’ve described in the 
past can apply to functions, too. For example, if we have a parameter to a function 
(like amount in currencyAmount()) that is treated as an integer inside the func-
tion but we pass in a string, then we get the same error as if we had just tried to do 
math on a string in a regular program as well. The function doesn’t change that. 
However, there are a couple of function-specific errors we can anticipate.

Parameter Mismatch
When we define a function, part of that definition is the declaration of how many 
arguments should be passed in. This comes in the form of the parameter list. Our 
currencyAmount() function above had two parameters: currency and amount. 

Figure 3.4.8
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To call currencyAmount(), the program had to supply arguments for both param-
eters (that is, values for both variables). What happens if we don’t?

Figure 3.4.9

Figure 3.4.10

Figure 3.4.9 shows this error in action. The error is TypeError, which we’ve 
seen before. The feedback from the error gives us plenty of information: “missing 1 
required positional argument: ‘amount.’” This basically says, “no value was given 
for amount.” The only reason amount specifically didn’t receive a value is because, 
as we described before, the arguments are assumed to go in the same order as the 
parameters. The first argument is 5, so it’s assigned to the first parameter, currency. 
This is wrong, of course, but that’s the way the computer interprets it. It then looks 
for an argument for amount, but doesn’t find one. So, it throws up that error.

Scope Error
We’ve covered the scope of functions themselves; basically, a function must be 
defined before it is called in some code, the same way a variable had to be created 
before it was used. However, what about the variables we use inside functions? 
What are their scopes?

The code in Figure 3.4.10 tests that out. Instead of returning something from 
currencyAmount, here we just set the result equal to resultString. If the scope 
of a variable created inside a function extended to after the function has run, then 
this code should work: by the time line 12 runs, line 8 will have run, and result-
String will have been created. Instead, though, we receive an error saying that 
resultString is not defined. Variables defined inside functions only exist inside 
those functions. The same goes for parameters: we can’t use currency or amount 
outside of currencyAmount() because these are variables specifically for that 
function.

This is the first major exception we’ve encountered to our general rule that the 
scope of a variable is the remainder of the program’s execution. Variables created 
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inside functions only exist inside that function, and only until the function is done 
running; if we called currencyAmount twice, it would be as if resultString 
was never created. In this way, functions really are like little programs; the scope 
of a variable is the remainder of the program, and a function is like its own little 
program, so the scope of a variable created inside a function is the remainder of the 
function. Note that this doesn’t interfere with the scope of other variables outside the 
function; a variable declared before a function call is still available after the function 
call, but not inside the function that is called.

6.  Advanced Python Functions
Different languages extend the general idea of functions in different ways. In Python, 
there are a couple of advanced details regarding functions that are worth covering. In 
fact, Python functions can get very complex, but we’re most interested in keyword 
parameters. Keyword parameters are not terribly common in what you’ll write, but 
they do add a lot of power to your toolbox.

Using Keyword Parameters
To understand keyword parameters, remember two things we’ve said. First, 
remember that we said Python assumes that arguments come in the order that 
parameters are defined in a function definition. Second, remember that at one point, 
we included a weird extra bit of code in a print statement: we said print("¥", 
end = ""). I promised to come back to this later, and now is later!

For required parameters, what we’ve said so far is true with regard to assuming 
arguments come in the order that parameters are defined. However, sometimes that 
can be a bit limiting. One instance of that is that oftentimes, we might have param-
eters for which we want to assume one value, but allow the program to override this 
if they want.

The print() function is a good example of this. The print() function takes 
as input one or more strings to print in order. We haven’t seen it printing multiple 
strings before, but we can see it now in Figure 3.4.11.

Keyword Parameters
A special kind of optional 
parameter to which the program 
may choose to assign an argument 
during a function call, or may 
ignore. Typically, keyword param-
eters have a default value that is 
used if it is not overridden by a 
function call.

Figure 3.4.11

Figure 3.4.12

When we give print() multiple strings, it prints them one at a time in the 
order they’re given, separated by spaces. Each print() function call automatically 
ends the line, which is why D E F appears on a different line from A B C; print() 
puts a space between each character and a new line at the end of each line. Techni-
cally, new line is just a character that isn’t shown, but instead tells the computer to 
print the next text on a new line.

The print() function assumes we want spaces between the individual strings, 
and a new line at the end of each print() call. What if we don’t want that? What 
if we want no spaces between strings, and no new line at the end of each line? Then, 
we use keyword parameters, as shown in Figure 3.4.12.
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A keyword parameter is a parameter that has an assumed value, but that the 
function call can override. Overriding it looks like declaring a variable: we take the 
name of the parameter, and assign it to a different value. Here, the parameter sep 
(for “separator”) is used to define what character will be used between each string 
in the print() call. It is assumed to be a space, but if we include the argument 
sep = "", it is assigned an empty value. Then, the print statement puts nothing in 
between the characters. Similarly, the parameter end holds what character to put 
at the end of the line. By passing the argument end = "", we override that with a 
blank character, forcing everything onto one line.

If this is confusing, let’s try to override sep and end with visible characters in 
Figure 3.4.13. This looks messier, but it might be easier to understand. Including the 
argument sep = "#" in the first line replaces those spaces from the original output 
with # symbols. Including the argument end = "?" replaces the new line character 
with a question mark. We can also see here how using different symbols in line 2 
causes different symbols to appear among the D, E, and F. 

Figure 3.4.13

These are keyword parameters. We don’t assume the program will define them 
because oftentimes they won’t; but we want to give the program the ability to define 
them if need be. If we simply list them as normal parameters, they become required, 
and throw up that TypeError from Figure 3.4.9 if the program doesn’t specify 
them. We don’t want the programmer to have to specify what separator to use every 
time they use the print() function, though, since most of the time it will be the 
same. So, we use keyword parameters, which give the program a way to specify 
alternate values when needed, but a way to ignore them in favor of default values 
when alternate values are not needed.

Creating Keyword Parameters
So, how do we create keyword parameters? In our function declaration, we include 
the parameter name, but assign it a value the same way we do when overriding it. 
For example, let’s assume we want our currencyAmount function to assume US 
dollars unless the program specifies otherwise.

In Figure 3.4.14, we’ve revised our function declaration to say currency = 
"USD" in the parameter list instead of just currency. We switched the order because 
keyword parameters must come after regular (also called positional) parameters. 

Figure 3.4.14
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We assigned currency a value of “USD”, which basically says, “Assume currency 
is ‘USD’ unless the function call says otherwise.” Beyond that, the function defini-
tion is the same.

Now, we call currencyAmount in two different ways. On line 13, we just give 
it the argument 5. Based on the position, the computer assumes 5 is the amount. 
No argument is given for currency, so it maintains the assumed value of ‘USD’ 
and runs accordingly. On line 15 we call currencyAmount, we specifically over-
ride the parameter currency with the value “GBP”, and as a result, the code uses 
“GBP” as the value for that variable.

7.  Functions and Turtles
Functions give us a powerful new way to add new functionality to our turtle project 
while keeping it somewhat organized. To close out our lesson on functions, let’s 
do two things: first, let’s take our prior work on a shape command and spin it off 
into a function, and second, let’s create a new function for something even more 
interesting.

The Shape Function
While our code to draw a custom shape wasn’t too long (five lines), it was still a 
good bit longer than other commands, which were only two lines. If we had com-
mands with even longer code, this could get big and disorganized fast. Functions 
give us a way to keep things more organized by separating out different areas of the 
program.

To start, let’s take that shape command’s code and make it a separate function. 
There are two ways we could do this: we could continue to get the user’s input in the 
main program, then pass it as input into the function to draw the shape. Or, we could 
just combine all that code into the single function and call it; then, the user input 
would be entered during the function call. The benefit of the first approach is that it 
allows us to draw a shape with numSides and sideLength regardless of whether 
the user entered these or if they came from somewhere else (like reading them from 
a file), so that’s probably the better design.

TheShapeFunction.py shows the code to do this the first way. Our changes are 
relatively simple:

•	 Defined a function drawShape() on line 5 at the start with parameters num-
Sides and sideLength (still after the import statement, though).

•	 Copied the three lines of code (from the ‘shape’ branch) after getting the side-
Length into the function drawShape(), line 6 through 8.

•	 Called the function drawShape() with the user’s inputted numSides and 
sideLength as arguments on line 35. Note that here, the arguments are vari-
ables, and their names (numSides and sideLength) happen to match the param-
eter names (also numSides and sideLength), but this doesn’t have to be the case.

So, now we’ve successfully spun drawShape() off into its own function. In 
the process, we’ve shortened the code inside the main reasoning of the program 
down to just the input lines and one line to actually do the drawing, like the other 
commands. One of the benefits of this is that it keeps our code more organized. The 
bigger benefit, though, is that it lets us call that function in more flexible ways. Let’s 
see how.

The Snowflake Function
To see this in action, we’re going to write a function that will call drawShape() 
multiple times. We couldn’t do that previously: we would have had to copy the for 
loop into a different area of the program to use it in a different place. Because it’s a 
function now, though, we can call it wherever we want.
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So, in TheSnowflakeFunction.py, I’ve created another command: snowflake 
(line 46). Snowflake asks the user for three numbers: the number of sides (line 48), 
the length of each side (line 50), and the rotation angle (line 52). It stores these in the 
corresponding variables, and passes them as arguments into the drawSnowflake() 
function (line 54), jumping to line 13. The drawSnowflake() function first uses the 
rotationAngle to figure out how many times it will have to rotate to cover a full 
360 degrees (line 14). It then runs a for loop that many times (line 15). Each time 
the for loop runs, it calls (line 16) drawShape() with the given number of sides 
and side length, jumping to line 5. Once the shape is drawn (repeating lines 6 and 7 
several times), the execution jumps back to line 17. There, it rotates the turtle by the 
rotation angle, and repeats drawing the shape.

The result? A snowflake effect, most of the time anyway. The same shape is 
drawn repeatedly, rotating a little bit about the center point each time. This can lead 
to some radically different results based on the number of sides and the rotation 
angle; try out some different combinations to see. Because of the while loop, we 
can use this to draw multiple things one over the other. Note that this is this easy 
(in terms of number of lines of code in drawSnowflake(), 5) because we first put 
drawShape() into its own function. That allowed us to create drawSnowflake(), 
which calls drawShape(). That’s the power of functional programming: not only 
does it keep our code more organized but it also lets us reuse and recycle segments 
of code in varied ways.
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Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to: 

•	 Illustrate the purpose of error 
handling, including try, catch, 
and finally blocks;

•	 Correctly use Python’s error 
handling structures and 
integrate them with other control 
structures;

•	 Implement error handling 
structures in their programs to 
catch and respond to invalid user 
input.

3.5Error Handling

c h a p t e r 

1.  What Is Exception Handling? 
Early in our conversations, we covered the idea of errors. Errors were specific times 
when our code tried to do something it wasn’t able to do. For example, we can’t 
divide by zero: telling our code to divide by zero would cause an error. Similarly, we 
can’t open a file that doesn’t exist: telling our code to open a file that doesn’t exist 
would cause an error. In some languages, these are also referred to as exceptions; 
and in some languages, there are subtle differences between errors and exceptions. 
Generally, we’ll use the words interchangeably until we get to your language-
specific material.

So far, we’ve most often used errors for debugging: when an error arises, we 
know we need to go and figure out what caused it and prevent it from happening 
in the future. However, that’s not the only purpose of errors. Sometimes, instead of 
preventing errors, we want to use the fact that an error arises to direct or control our 
program. In other words: some errors might be expected and even purposeful, and 
when they arise our program should know how to deal with them.

“Catching” Errors
We call this “catching” an error. An uncaught error (also called an unhandled 
error) will crash our program. A caught error will let our program keep running, 
and we can add code that specifically runs if an error was caught. We can even add 
different blocks of code that react to different types of errors.

Let’s take an example. Imagine we asked the user to put in a list of numbers. 
We would then run a for-each loop over all the numbers, add them up, and divide 
the sum by the length of the list of numbers. What happens if the user doesn’t put in 
any numbers, though? That’s not a problem for our for loop: it still runs for “each” 
item in the list, there just aren’t any. It would be like going to the grocery store with 
an empty shopping list: it’s silly, yes, but it wouldn’t cause your reasoning to crash.

However, what happens when it reaches the end of the loop? It attempts to 
divide the sum, 0, by the length of the list, also 0. 0 divided by 0 triggers a divide-
by-zero error, which would crash our program. The user shouldn’t be able to crash 
the program, though, so we need to avoid this. There are two ways we can avoid 
this error: one, we could simply run a conditional before calculating the average to 
make sure the length of the list was not zero. If the length is not zero, we calculate 
the average; else, we show a message to the user saying, “You can’t average an 
empty list!”

There’s nothing wrong with that method, but let’s talk about the other approach: 
catching the error. We can look at this code and know: the only possible way to 
encounter a divide-by-zero error is if the list was empty. So, if a divide by zero 
error arises, that must mean the list was empty. So, instead of checking if the list 
was empty first before trying to calculate the average, we can instead just tell the 
computer, “Hey, try to calculate the sum, but don’t crash if you can’t: instead, just 
tell the user they can’t average an empty list.” This is catching the error: telling the 
computer not to crash if the error is encountered, as well as giving it some step to 
take instead.

Catching Errors
Using error handling to prevent 
a program from crashing when 
an error is encountered.

Uncaught Error
An error that is not handled by 
error handling code, and thus 
usually forces the program to 
crash. 
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When to Catch Errors
In the example above, we had two pretty equivalent options: we could use a condi-
tional to check if an error would occur in advance, or we could catch errors after they 
already occurred. What’s the usefulness of catching errors if they could be avoided 
with conditionals?

First, part of this is more about our thought process when creating programs. 
Catching errors lets us first emphasize the code itself, and later think about what 
errors might arise. You don’t want to do that in big programs, but for individual 
functions, that can help you focus on the actual reasoning of the function first. Along 
these same lines, when catching errors, some of the code will run until an error 
arises, whereas with the if statement, either all the code will run or not of it will. 
That can be useful, too.

Second, catching errors can create more organized code. If you have a segment 
of code that could have multiple expected errors, then you would need either (a) one 
long conditional that checks every possible error, or (b) a series of conditionals each 
checking a different error. Either of these can get messy. When you’re catching 
errors, you can generally just wrap up one long code block and list the errors that 
could arise at the end.

Third and perhaps most importantly, if you’re writing programs for people to 
actually use (which, presumably, is the goal of learning to program), you never want 
a program to crash on the user. The goal is error-free code, but in big programs, 
that’s nearly impossible; big applications such as games or operating systems may 
handle dozens of errors per second. Many of these are expected, but some aren’t. 
Catching errors localizes the damage even of unexpected errors. For example, if 
you were writing a document in a word processor and it hit an error loading a font, 
you wouldn’t want the program to just crash; you’d want it to say, “Well, it’s better 
to not show that font than to crash altogether.” Error handling allows us to write 
programs where, even if there are unanticipated errors, their damage is localized 
and minimized.

2.  Try-Catch-Finally 
We’re covering error handling in the control structures unit of this course because 
the actual structure of error-handling is, itself, a control structure. There are three 
common structures for error-handling: the try, catch, and finally.

The Try Block
The try block of the error-handling control structure is the simple one. It marks off 
the code in which an error is anticipated to arise. On its own, it doesn’t actually do 
very much; it’s more of a marker, so the computer knows what code might have its 
errors handled later on. The computer will run the code in the try block until an 
error arises; if an error arises, the code will skip the rest of the code in the try block 
and jump to the code in the next block, the catch block.

Earlier we mentioned that error handling is like a conditional statement. We 
could handle errors with a conditional by saying, “If an error is going to arise, don’t 
run this code; else, do run it.” In that structure, we would put the code we actually 
want to run in the else portion of the structure. The try block is thus similar to the 
else block: it’s a block of code marked off to run if some other block didn’t run. 
However, the try block is different in that it will always start to run, and only stop 
when an error is encountered.

The Catch Block
When the computer encounters a try block, it makes a “mental” note that if an error 
occurs during the block, it should jump forward to the catch block. The catch 

Try
A control structure that sets aside 
a block of code in which an error 
might occur so that the computer 
will look for error handling 
capabilities.

Catch
A control structure that designates 
what error it anticipates in a try 
block and provides the code to 
execute if that error arises.
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block contains the code the computer should run if an expected error was encoun-
tered in the try blcok.

The catch block has one additional detail declared with it: the type of error 
to be expected. We can tell the computer exactly what kind of error to catch. For 
example, we could write code that would catch a divide-by-zero error only, but 
would let any other errors through and crash the program. We could also design our 
code to have multiple catch blocks, allowing it to react differently to different kinds 
of errors; for example, it might warn the user about averaging an empty list on a 
divide-by-zero error, and it might send a message to the programmers if a different 
error was encountered. In some languages, we can even skip the catch block alto-
gether: a try without a catch just tells the computer not to crash if the code inside 
the try block raises an error.

The catch block is where the bulk of the interesting reasoning in error han-
dling occurs. If the error was expected in some way, the catch block might tell the 
user why the error occurred and how it can be fixed. If the error was not specifically 
expected, the catch block could print the reason the error occurred to the console, 
or trigger an error report to be submitted to the developers. Any type of code can be 
placed into both a try and catch block, so we could do complex reasoning like 
determining if the user has opted in to reporting errors.

The Finally Block
Finally (pun intended), some languages have a finally block. The finally block 
contains code that should be executed after the code in the try block whether it suc-
ceeded or not. If the code in the try block ran without errors, then execution will 
jump to the finally block when the try block is done. If the code in the try block 
hit an error, execution will (in most languages) run what is in the catch block next, 
and then will always run the code in the finally block. For this reason, we generally 
want to be very confident in what we put in the finally block since, if it raises an 
error, too, we aren’t prepared to catch it.

The finally block is typically used for code that absolutely needs to run, 
even if other things have gone wrong. For example, imagine some code to close 
an application. If there is code in the close function that can raise an error, then the 
application can’t exit at all! We would want to enclose the close function in a try-
catch-finally structure, and in the finally block, we would want to ensure that 
the application really does close.

3.  Try and Except in Python
So far, we’ve been avoiding errors in our code. Now, we get to add them intention-
ally, so that we can learn how to catch them. We’ll start just by using try blocks to 
prevent code from crashing if errors are encountered; then, we’ll catch these errors 
and react accordingly.

The Try Statement
To experiment with catching errors, we need an error to catch. Let’s start with some-
thing simple: trying to convert a non-numeric string to an integer. What happens if 
we do this without any error handling?

In Figure 3.5.1, we’re given an error on line 3, the attempted type conver-
sion. Notice that line 2 still runs and prints this statement, but line 5 does not run 
because the error arises on line 3. For now, all we want to do is prevent our code 
from crashing when it tries (see why it’s called a try statement?) to do perform this 
type conversion. However, Python is not a language that allows try without catch 
(or alternatively, finally), so we need to include both. We’ll talk more extensively 
about the catch in the next section.

Finally
A control structure that designates 
some code to run after a try and 
catch structure regardless of 
whether or not an error arose.
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In Figure 3.5.2, we’ve added the line try: on line 3, following the comment. 
Like all other control structures, the colon indicates a code block for this statement 
to control, and all indented code following this line falls within this block. So, the 
computer starts executing the lines of code in the try block. It runs line 4, then 
attempts to run line 5. Line 5 still generates an error. Instead of crashing as before, 
the computer instead knows it’s inside a try block, and so it should look to see if 
the catch on line 8 actually accepts this error; except is Python’s word to indicate 
a catch block. As we’ll see next section, this does catch the error, so it jumps into 
line 9, the first line inside the catch block. Line 9 simply tells the computer to con-
tinue with the keyword pass, and so it runs line 10, then closes. We haven’t resolved 
the error in line 5, but we’ve allowed our program to recover from it.

Figure 3.5.1

Figure 3.5.2

This is the essence of the try block. If an error occurs inside of it, the computer 
checks if that type of error is caught. If so, it jumps into the catch block and runs 
the code there, then continues as if no error occurred. If not, it crashes as usual.

Catching Any Error
In Python, the catch block (which we’ll now call the except block) starts with 
the keyword except. In speech, we can think of this as saying, “try this, except if 
this error happens…” We had an except block in the previous code by necessity: 
Python won’t allow a try block without an except block. However, it didn’t do 
anything; we used the keyword pass to skip on to the next line of code. Let’s now 
make it actually do something.

As we can see in Figure 3.5.3, adding the print statement on line 9 into the body 
of the except block runs it when the code hits an error. The code runs until line 
5 and hits the same error as before. It checks line 8 to see if the error was properly 
handled. It is, so it runs line 9, then proceeds to line 10. The code in line 9 runs if 
any error is encountered.
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Catching a Specific Error
Note that the way we’ve written Figure 3.5.3, any error will be caught by this 
except block. If we don’t specify a type of error to catch, the except block will 
catch any error. So, take a look at what happens if we add a different error earlier in 
the try block in Figure 3.5.4.

Figure 3.5.3

Figure 3.5.4

Figure 3.5.5

Line 5 here has a different error: it tries to cast an integer to a string implicitly 
instead of explicitly. If you don’t understand why this is an error, glance back at 
Chapter 2.2, but you’re also safe to continue as long as you remember that line 5, 
as written, will cause an error. To write line 5 successfully, we would need to write 
str(1) or “1”, not just the number 1 (unless we use commas instead of addition 
signs). However, our error handling code was written to catch any error, and so this 
error is caught, too. The message printed by the except block is inaccurate because 
this error clearly wasn’t the one we expected. To avoid this, we should instead catch 
a specific error. Line 6 would generate a ValueError, so if that’s the error we 
expect, let’s catch that one specifically, as shown in Figure 3.5.5.

The error that arose on line 5 wasn’t a ValueError (but rather, a TypeError), 
and so this except block didn’t run. Adding the term ValueError after except 
tells it to only run this except block for a ValueError. Because a TypeError 
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occurs before a ValueError, the try block stops executing before a ValueError 
occurs. If we remove the line that gives us the TypeError, this code still runs as 
before, as shown in Figure 3.5.6. The error that arose, a ValueError, was caught 
by the except statement on line 8.

Figure 3.5.6

Figure 3.5.7

We can also take this a step further: if we’re handling unexpected errors or we 
want to know a little more about why the error arose, we can further extend this to 
print information about the error itself, as shown in Figure 3.5.7.

Figure 3.5.8

An error is a data type like integers or strings, and so when we catch it, we can 
actually grab it as a variable. Adding as error to the end of the except statement 
means that inside the except block (but not after it, its scope is only inside the 
except block), we can treat the error as a variable, named error (or whatever 
variable name we placed after as). We can save it to a file, print it to the console, 
or access other information about the error. Now instead of printing our prewritten 
statement, the except block prints whatever it would have printed to the console 
while crashing by printing error. We get the same information.

Catching Multiple Specific Errors
This except block is a lot like saying, “if a ValueError was detected, then…” It’s 
similar to a conditional. Remember, with conditionals, we could also chain together 
multiple elif statements to check multiple conditions. We can do that here, too. 
Let’s bring back the line that triggered a TypeError, and catch both in Figure 3.5.8.
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Note as well that there are a couple more advanced ways we can handle this. We 
could, for instance, have single except blocks that handle multiple kinds of errors, 
but not all kinds of errors. We could also have a series of except blocks that handle 
specific errors, followed by a catch-all except block at the end that handles any 
others. Figure 3.5.11 shows both.

In Figure 3.5.11, line 11 catches either a TypeError or a ValueError. We 
can specify multiple errors to catch by listing them in parentheses, separated by 
commas. We use the same syntax for then assigning the error to a variable. So, in 
Figure 3.5.11, a TypeError occurs first (on line 5), and so the except statement 
on line 11 activates.

Figure 3.5.9

Figure 3.5.10

Just like chaining together elif statements, we can chain together except state-
ments, as seen on lines 9 and 12. Here, we catch either a TypeError (line 12) or a 
ValueError (line 9). However, if a different kind of error still occurs, it remains 
uncaught, as shown in Figure 3.5.9.

If we add a random division-by-zero on line 5, the code still crashes because 
ZeroDivisionError is not one of the types of errors our except statements 
can handle. Note, however, that if this uncaught type of error were to occur 
after a caught type of error occurs, it would not be a problem because the line 
causing the uncaught error would never run. The code jumps to the except 
statements  the first time an error is encountered, and does not come back. So, 
if we move it to the end, we see the code will end gracefully again, as shown in 
Figure 3.5.10.
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In Figure 3.5.12, we moved the divide-by-zero error back up to line 5. As a result, 
it’s encountered first. It’s not a TypeError or ValueError, so the except statement 
in line 11 ignores it, and the computer moves on and checks the except statement in 
line 14. This except block catches any other error, so this one is activated, and the 
computer prints that some other error occurred. Note that this line also shows you how 
to catch any kind of error and assign it to a variable: instead of specifying an error type 
like ValueError, just use the word Exception. The line except Exception: 
works the same as except: on its own because Exception is the “umbrella” over all 
the different kinds of errors. Using it, however, lets us add as error to the end.

Figure 3.5.11

Figure 3.5.12

4.  Else and Finally in Python
At this point, we’ve tried some code and caught any errors that arose while that code 
was running. In some languages, that’s all there is. In many languages, there’s an 
additional block called finally, which runs some code whether an error occurred 
or not. Python also adds an additional option: remember else from conditionals? 
We can use else here as well!

Else for Error Handling
To use an else with error handling, we add it after all the except blocks. 
Figure 3.5.13 shows an example of what this looks like.

Note that here, I’ve changed myString to actually hold a number, specifically 
so that an error does not arise. The goal of this code is to show that an else block 
at the end of a sequence of try and except blocks runs some code if and only if 
no errors arose. Colloquially, we can think of each except block as, “if this error 
occurs, then…,” and the else block at the end is like the else after a series of elif 
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Figure 3.5.14

Figure 3.5.13

blocks. The else is in reply to the except blocks: if any of them run, the else 
block won’t run. If none of them run, the else block will run.

You might ask, as I did when I was first learning Python, why we need an else 
block—why not just include that code inside the try block itself? Much of the time, 
we can without making a practical difference in how our program runs. However, we 
can use this more stylistically. In many languages, it’s normal to have huge blocks of 
code in a try block, even though the expected errors are only in one or two places. 
The else block lets us restrict our try block to only the code that we expect to 
generate an error. The else block will only run if no errors were encountered, so we 
can trust everything that was written in the try block ran successfully.

Else and File Input
A good example of this is file input. Whenever we load some data from a file, we 
want to enclose the attempt to load the file in a try block because file input com-
monly raises errors; some languages even require file input to happen inside a try 
block. Figure 3.5.14 shows what that looks like without an else statement; this 
code loads a file, then prints everything in the file.

Before talking about the try and catch, let’s take some time just to understand 
file input. We’ll talk about it more in Unit 4, but we can discuss it a little in the mean-
time. The open() function on line 3 takes as input a filename. Optionally, it can also 
take a mode as a keyword parameter: here, the mode “r” means read-only, which means 
we can read the contents of the file but not write to it. Once we’ve loaded the file into a 
variable (another data type, file!), we can read one line at a time with a for-each loop.

Here, we catch an input–output error on line 11, called an IOError, if an error 
arises inside the try block. However, the only place where an IOError can happen 
is when we read from or write to a file. That only technically happens on line 3; this 

open(filename): 
Takes as input a filename and 
returns the file. Once returned, 
the file can be read line-by-line or 
written to, depending on the mode. 
Mode is set with the keyword 
parameter “mode”, “r” for read, 
“w” for write, “a” for append.
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line loads the file into the program, and lines 5 and 7 just print it. So, really, we only 
need to catch an IOError that arises on line 3; it can’t arise elsewhere. So, while 
the code we have right now is fine, it would be great to narrow down where the error 
could have arisen.

Figure 3.5.15

Figure 3.5.16

As shown in Figure 3.5.16, the error is caught! We see the text in the output 
came from line 6 in the code. Because the error was caught, the else block doesn’t 
execute, so we don’t see any attempt to read the non-existent file in the output. This 
could be read as, “If an IOError occurs, print ‘An input error has occurred!’; else, 
print the file using this loop.”

Finally
Finally, we come to the finally block. As mentioned previously, the finally block is 
for code that needs to run regardless of whether an error was detected or not. With 
this block, we are now able to cover every possible situation:

•	 The try block contains the code to attempt.
•	 The except blocks contain the code to run if and only if an expected error type 

occurs.
•	 The else block contains the code to run if and only if no errors occur.
•	 The finally block contains the code to run regardless of whether or not an 

error occurred.

When would we need a finally block? Imagine if we expected a file to just 
contain numbers. When we originally load a line of text from this file, the line of 
text is stored as a string, and we want to convert it to an integer. Then, the error we 

The code in Figure 3.5.15 will do the same thing, but it’s a little bit better orga-
nized. The try block contains only those lines of code that need to be in the try 
block, and lines that rely on that code are in the else block. What happens if we try 
to run this with a filename that doesn’t exist?
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would anticipate would be a ValueError, which is what would arise on line 7 of 
Figure 3.5.17 if one of the lines of the file was not an integer. In practice, we would 
also want to anticipate the IOError from before, but we’ll remove that for now to 
demonstrate the finally block. However, even if a ValueError occurs, we still 
want to close the file! So, regardless of whether an error arises or not, we put the 
close() method call in the finally block, as shown in Figure 3.5.17.

Notice a few things here. First, notice we moved the line opening the file (now 
line 2) outside the try block. We’re no longer expecting an error here (for now, 
we’re ignoring the error we might expect here), so it doesn’t need to be in the try. 
Notice that we kept the loop (lines 4 through 7) inside the try block, even though 
the error can only occur when we’re performing the type conversion. Technically, 
we could put the try block inside the loop! We’ll try that later.

The main takeaway here, though, is that the code in the finally block is run 
regardless of whether any errors occurred or not. This code will call inputFile.
close() regardless of whether an error was encountered converting the file or not. 
Now, this might leave you with a question: couldn’t we instead just put the code 
we want to run regardless after the error handling blocks? Won’t the code just jump 
back out after it’s done and hit that line of code anyway? In other words, how is 
using the finally block any different from just putting inputFile.close() on 
line 13, unindented, as shown in Figure 3.5.18? The answer is that finally has a 
special behavior when it comes to uncaught errors.

close():  
A method that closes the file of 
which it’s a member.

Figure 3.5.17

Figure 3.5.18

Finally and Uncaught Errors
After the computer tries the code in the try block (lines 4 through 7 in Figure 
3.5.18 and runs the code in either the except block (line 10, if there was an error) 
or the else block (line 12, if there wasn’t an error), won’t it just proceed to run the 
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inputFile.close() line? The answer is: kind of. The finally block has one 
special feature. If there were errors in the try block that were not handled by the 
except blocks, then the finally block still runs. Here, we’re catching a ValueEr-
ror on line 9, but no other types of errors; if a TypeError were to occur inside the 
try block, it would not be caught, but the finally block would still run.

Let’s go back to our example from Figure 3.5.10. Remember when we had 
except blocks for TypeErrors and ValueErrors, but a ZeroDivisionError 
occurred? Our code still crashed in Figure 3.5.10; and even with a finally block, it 
will still crash. However, a finally block lets us do some things first.

The result of using a finally block is shown in Figure 3.5.19. The ZeroDi-
visionError isn’t caught, but because it still occurred inside a try block, our 
finally block still runs. In the output, you see the error message, starting with 
“Traceback”, but you also see the text printed by line 16 after the error is printed. 
You might notice also that this is almost the same result as including except 
Exception: at the end, as shown in Figure 3.5.13. However, with except and 
finally, our code still crashes after it runs the code inside the finally block. This is 
useful during debugging: when debugging, we want to know that our code crashes, 
but we want the opportunity to find out why, too. The finally block lets us print 
why, then crashes anyway.

Figure 3.5.19

Nested Try-Catch-Else-Finally
Earlier we said we would temporarily remove the check for IOError to show off 
finally. However, in practice we would still want to check that while opening the 
file, while also checking for a TypeError while reading and converting the file. If 
an IOError occurred, we don’t even want to try reading or closing the file; but, if a 
TypeError occurred, we still want to close the file. How do we do this?

By now, you’ve seen nested control structures several times, so we won’t 
belabor the point. The conclusion is: we can put a try block inside another try 
block, as shown in Figure 3.5.20. Our outer try block, starting on line 1, checks 
whether or not the file was successfully opened on line 3; if it wasn’t then an 
IOError is raised, and so we just need to print that the file was not opened in the 
except block on lines 18 and 19. If it was successfully opened (i.e., if line 3 didn’t 
cause an error), then the inner try block checks if the conversions were successfully 
run. If they were, that means that no errors were encountered, and so it reports that 
they were converted on line 13; if they weren’t, it means an error was encountered, 
so it reports that they weren’t converted on line 11. Either way, it needs to close the 
file, so it does so on line 16 inside the finally block. In Figure 3.5.20, we see the 
code running with a file of all integers, so no errors occur.
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Notice that line 16 is only reachable if the file was opened successfully; if it 
wasn’t opened successfully on line 3, then execution would be kicked to line 18, 
skipping lines 4 through 16. By placing the inputFile.close() function call 
here, we guarantee we only try to close the file if it was previously opened.

Figure 3.5.21 shows the code running with a file of non-integers. An error 
occurs in the inner try block and is caught as a ValueError when the code tries 
to convert a string without an integer into an integer. So, “A value error occurred!” 
is printed, but the file is still closed by line 16 because of the finally block.

Figure 3.5.20

Figure 3.5.21

Finally, Figure 3.5.22 shows the code running with an input file that doesn’t 
exist. The error occurs on line 3, which is in the outer try block, so it is caught as 
an IOError by line 18. So, “An error occurred reading the file!” is printed. The file 
doesn’t need to be closed because it was never successfully opened in the first place, 
and similarly, no ValueErrors could occur because the try block quit before 
reaching line 8.
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5.  Error Handling and Other Control Structures
Recall that early in our material, we covered some common types of errors such 
as TypeError and NameError. Since then, we’ve encountered some others, like 
IOError and ValueError. Remember, when we first went over these, we stated 
that you wouldn’t necessarily understand them all right away: rather, they were 
provided early so you could keep going back to them. I’d advise going back to them 
now as well with your new knowledge of programming and errors in general. You 
may also read a complete listing of Python’s error types here: https://docs.python.
org/3/library/exceptions.html.

As we close our conversation on control structures, let us look at how error 
handling integrates with the other control structures that we have seen.

Error Handling and For Loops
Recall as briefly mentioned earlier that because a for loop was itself enclosed in a 
try block, one single error on any iteration of the loop would cause the execution of 
the program to jump to the error handling statements. So, the code would read from 
the file until it found a non-integer line, and then it would quit, as shown in Figure 
3.5.23. This file contains some lines with integers, then some without.

Figure 3.5.22

Figure 3.5.23

As we see in Figure 3.5.23, the code runs just fine for the first two lines of 
the file, which have integers (1 and 2). The third line of the file does not have an 
integer, so it jumps to the except block, which ends execution and prints that a 
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How will Figure 3.5.24’s execution differ? Recall that when our code runs, the 
code inside the try block will run. If an error arises, it will jump into the except 
block. If no error is found by the conclusion of the try block, it will jump into the 
else block. Either way, it will then run the finally block, if present. What happens 
after that? After that, execution moves on to the next line of code outside of the try-
except-else-finally structure.

However, in Figure 3.5.24, that try-except-else structure is in a loop. 
When we reach the end of an iteration of the loop, execution jumps back to the loop 
and asks, “Are the loop’s conditions fulfilled?” If so, the loop ends. If not, it does 
not. Whether an error was raised or not, the loop is not done. The try, except, and 
else blocks were all inside the loop, so when the code jumps to the except block, 
it’s still jumping inside the loop. Previously, when it jumped to the except block, it 
was jumping out of the loop. Now, it’s jumping within the loop, so an error does not 
interfere with the loop touching each line of the file. In Figure 3.5.24, we can tell this 
is happening because the code continues running after hitting an error: specifically, 
it encounters two errors because the third and fourth lines each have non-integer 
contents, so each cause an error. Previously, encountering an error terminated the 
loop, so it would be impossible to encounter two errors.

Error Handling and Functions
What happens if an error arises in a function that you write? There are two ways we 
might handle that: we could handle it inside the function body, or we could handle 
it in the code that makes the function call. Let’s look at both, using a silly function 
we’ll write specifically to create errors: divideByZero().

Figure 3.5.24

ValueError has occurred. What if we wanted it to only skip the current iteration, 
though, and then keep reading the file? To do that, we could switch the order: instead 
of putting the for loop inside the try block, we could put the try block inside of 
the for loop, as shown in Figure 3.5.24.

Figure 3.5.25
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6.  Error Handling and Turtles
We’ve been developing code that allows a user using the command line to control 
the turtle in the turtle window. However, we’ve noted a couple times that there was 
a weakness. While our code could intelligently react if the user entered an invalid 
command, it could not intelligently react if the user entered an invalid argument. 
When prompted for distance, angle, or number of sides, if the user entered a non-
numerical input, the program crashed.

We now have the means to fix that. We’ll keep things relatively simple and say 
that if a user enters an invalid argument, they are kicked back out to the first menu.

Error Handling and Turtles
Our goal to start with is to rerun the loop from scratch if an error is encountered. 
We don’t want to quit the entire program if the user enters invalid input, but right 
now we’re not worried about just repeating the same questions until we get the right 
answer. So, in that case, we can wrap the entire series of conditionals in one giant 
try block, as shown in ErrorHandlingandTurtles.py on line 24.

We added only a couple lines–line 24, 64, and 65, as well as indenting the 
lines after 24–but their impact is powerful. Now, if the user accidentally enters a 
letter instead of a number, the code doesn’t just quit and crash; it tells them that the 
input was invalid, but it lets them try again. That’s immensely powerful. Now, the 
only way to exit the program is to type end when prompted. It’s far less likely for 
someone to do that by accident than accidentally enter a letter when they should 
enter a number.

Error Handling and Functions with Turtles
However, note that this still isn’t ideal. The ideal approach would be to instead keep 
repeating that one specific query until the user puts in some valid input. If a user 
selects the snowflake command and enters “5,” “100,” and then accidentally types 
“3p” instead of “30,” it should not send them all the way back to the beginning to 
enter “snowflake,” “5,” and “100” again. Instead, it should simply ask them to try 
again on that last prompt.

Figure 3.5.26

In Figure 3.5.25, we catch the error inside the function. When the function is 
called, it attempts to execute line 4, fails, and jumps into the except block. It prints 
the error on line 6. Then, it jumps back to the main program, and runs the final print 
statement on line 10.

What happens if we put the error handling directly in the code that calls the 
function? As shown in Figure 3.5.26, we get effectively the same result. The error 
occurs inside the function, but because it isn’t caught inside the function, it comes 
back out to the main program. There, it does get caught. That’s a pretty advanced 
principle, so don’t worry if it’s a bit confusing. The point is that if an error happens 
in a function, it will keep “rising” until it is handled. If it’s never handled, the 
program crashes.
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With what we have in ErrorHandlingandTurtles.py, though, that’s extremely 
difficult. We could wrap each individual input statement in a try block, but that 
would add a lot of mess to our code. More importantly, it still wouldn’t help; after 
executing the except block for these try blocks, the code would continue. It 
wouldn’t be able to draw without getting the argument and it couldn’t go back and 
get the argument, so it would return to the beginning of the loop again.

So, how can we force the user to keep answering a single prompt until an 
integer is correctly entered? Beware, things are about to get complicated. Don’t 
worry if this confuses you at first. This might not make total sense for a long time. 
You can see the implementation of this in ErrorHandlingandFunctionswithTurtles-
Recursion.py.

We’ve actually only made two general changes to create ErrorHandlingand-
FunctionswithTurtles-Recursion.py from ErrorHandlingandTurtles.py:

	 1.	 We added the getIntegerInput() function at the top.
	 2.	� We replaced all the calls to input() inside our main code with calls to 

getIntegerInput().

We also removed a couple type conversions that aren’t needed anymore, and our 
error handling code which isn’t needed anymore either. However, even though these 
are only a couple changes, what we’ve changed is profound. First, instead of relying 
on Python’s built in input() function, we’ve built our own. It still uses Python’s 
input() function, we’ve built some reasoning around it. And because we’ve put it 
in a function, we can refer to it wherever we were referring to Python’s input() 
function. This has the practical effect of being like putting these try and except 
blocks all over our program: we keep referring to a function that has these try and 
except blocks built in.

The more profound thing we’ve done here, though, is how we’ve structured 
our getIntegerInput() function. We get the user’s input, try to convert it to an 
integer, and then if it works, we return it. So, if we return from here, we know it’s an 
integer, and the user’s input was valid.

What happens if the user enters invalid input, like a letter? That generates an 
error on the second line of the try block. That means the program jumps down to 
the except block. It tells the user to enter an integer, and then it does something 
clever: it runs getIntegerInput() again, with the same prompt. Don’t worry 
if this is confusing; we’re previewing the advanced topic of recursion from the last 
unit of our course.

Essentially, when execution reaches the second line of the except block, it 
creates another copy of getIntegerInput(), and runs that. So, we repeat exactly 
what we just did. If the user enters valid input the second time, then the second copy 
of the function returns that input. The first copy basically says, “return whatever 
the second copy returns.” If the user enters invalid input the second time, too, then 
execution creates a third copy, and the second copy says, “return whatever the third 
copy returns.” So, as long as the user keeps entering invalid input, it keeps creating 
an extra copy, and each copy returns whatever the copy it creates returns.

It’s like a while loop, and in fact, we could implement this in a while loop. 
ErrorHandlingandFunctionswithTurtles-While.py shows how.

In ErrorHandlingandFunctionswithTurtles-While.py, we’re doing effectively 
the same thing: getting input from the user, checking if it’s an integer, and repeating 
the request if not. The main difference is that instead of a function creating another 
copy of itself, this relies on us knowing that there is an isdigit() function that 
checks if a string holds a digit. So, we’ve actually removed error handling from this 
code by checking if an error will arise preemptively.

This is the most complicated thing we’ve covered so far (especially the first 
version of doing this), so don’t worry if you’re a little lost. The main takeaway here 
is the type of complexity we’re starting to build into our program. Lots of functions, 
helper functions, replacing built-in functions—we’re getting pretty advanced.
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Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to: 

•	 Use advanced data structures and 
ways to pass values of a variable, 
including pass by value and pass 
by reference;

•	 Demonstrate the use of pass 
by value and pass by reference 
and leverage the concept of 
mutability;

•	 Differentiate between methods 
and functions and analyze the 
effect of a method call on a 
program.

4.1Data Structures

c h a p t e r 

1.  What Are Data Structures?
So far, we’ve done some pretty interesting programming with a relatively limited 
number of data types. We’ve used numbers, some characters, and some strings. Is it 
really possible, though, that all the complex reasoning we see on computers can be 
built out of these simple types of data?

Advanced Data Types
In a sense, yes; in fact, everything on your computer is distilled down to 1s and 0s 
for your computer to process with a relatively small set of commands, at a rate of 
billions of commands per second. Our programs get translated down through the 
layers until the computer can execute them in terms it understands.

But for building programs at our level, do we really build them out of these 
control structures and simple data types? No; we need some more complicated data 
structures to build the reasoning that we see in computers today. In this unit, we’ll 
cover a few of these data structures. Specifically, we’ll focus on the data structures 
that contain multiple pieces of other information, like lists and strings—remember, 
strings are like lists of individual characters

Lists and List-Like Structures
So far, everything we’ve covered has involved a one-to-one mapping between vari-
ables and values. Every variable could have one and only one value. What happens, 
then, if you need to keep track of the names of all the students in a class? Do you 
create a different variable for each student? What if you’re building a roster program 
where you don’t know in advance how many students to expect; do you just make 
sure to create more variables than you need?

This is where list-like structures come into play. List-like structures, also 
called sequences, give multiple values to a single variable name. The individual 
values are then accessed through some kind of index. For example, if we have a 
variable named roster, we could specifically ask for the first name on the roster, 
the seventh name, or the twelfth name. The variable roster has one name, but there 
are multiple values associated with it, accessed via numbers called indices (plural 
for index). Sometimes (specifically, with dictionaries, the topic of Chapter 4.5) it 
won’t be numbers that we use to access these values, though; it might be strings or 
other data variables.

Lists can generally hold any kind of data, including other lists. Using that, you 
can make some pretty complex data structures. You could make a list of classes in 
a school, where each class is actually a list of students. That could go deeper: each 
student could be a list of grades, or you could have a list of schools where each 
school is a list of classes. That’s moving toward the more complex data structures 
that we’ll talk about in Unit 5. 

Unit Outline
In this unit, we’ll cover four different general classifications of data structures. We’ll 
begin with strings. You’ve seen strings a lot before, but only because it’s difficult to 

Data Structures
Approaches to organizing 
abstract data types, such that the 
data can be accessed efficiently.

List-Like Structures
Also referred to as sequences 
and collections, a data structure 
that holds multiple individual 
values gathered together under 
one variable name, accessed via 
indices. Includes to lists, arrays, 
and tuples. Lists are simultane-
ously a type of data structure 
and a specific type in some 
languages.

Index
A number used to access a par-
ticular element from a list-like 
data structure. Traditionally, 
most programming languages 
assign the first item of a list-like 
data structure the index 0.

String
A data structure that holds a list, 
or a string, of characters.
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do anything in programming without the ability to print text. We’ve only scratched 
the surface of what strings can do and how they can be used. Strings are actually 
relatively advanced data structures, both because they technically store a list of other 
items (in this case, a list of individual characters) and because they have complex 
reasoning built into them to deal with human language.

Then, we’ll cover lists. Lists are single variable names that can store several 
different items of data, accessed by a numeric index. For example, we can ask for 
the 7th value of the list named myList. Different languages handle lists very differ-
ently, and many languages have multiple different ways of handling lists, so we’ll 
briefly cover the general concepts before jumping into your language’s instantiation 
of the concept.

Then, we’ll cover file input and output. File input and output is how we persist 
information across multiple sessions of a program. In many ways, it resembles and 
builds on list-like structures. When writing files, we’ll very often write all the items 
in a list one-by-one. When reading a file, we’ll often treat the individual lines like 
strings in a list. This isn’t always the case, but the similarity is sufficient to make this 
a good time to cover file input and output.

Finally, we’ll cover more advanced list-based structures, like Dictionaries and 
HashMaps. These data structures are similar to lists in that they store multiple values, 
but they differ in that the values can be accessed not just through numeric indices, 
but also through strings or even other data structures. You could, for example, have 
a data structure that stores multiple students and their grades, and to look up my 
grades, you’d look up “David” instead of having to know that I’m the 7th student in 
the list.

Before we get there, though, there are a couple concepts regarding advanced 
data structures that are important to understand: passing by value, passing by refer-
ence, and mutability. These are complex principles that may not come up often in 
your routine programming, but they’re fundamental concepts in computing.

2.  Passing by Value vs. Passing by Reference
The first concept we want to understand is the difference between passing by value 
and passing by reference. This distinction specifically applies to writing and using 
functions. This is one of the more complicated concepts we’ve covered so far, 
and the terminology is a bit unfamiliar. Let’s start by talking about the difference 
between the two, and then move on to talking about where the terms “by value” and 
“by reference” actually come from.

Passing by Value: An Analogy
Let’s return to the analogy we used when describing functions. You worked in an 
office, and you had a co-worker named Addison. Addison’s job was to add two 
numbers. Any employee in the office could give Addison two numbers, and Addison 
would return the result.

Let’s bring variables into this. On your desk, you have two files: File A and 
File B. On File A and File B are written numbers, 5 and 2 respectively. These are 
variables and values: the variable A has the value 5, and the variable B has the 
value 2. Last time, you wanted to add these two numbers together, but we didn’t 
really talk about what we would do with the result. This time, let’s imagine we 
want to add B to A; or, in other words, to add 2 to 5. You want to set A equal to the 
sum of A and B. Our end result should be that A should have the value 7.

Previously, the way we described this is that you shouted across the office, “Hey 
Addison [the function call], 5 and 2 [the arguments]!” Addison shouted back, “7 [the 
return]!” So, you erase the number 5 on File A and write the number 7. You set A 
equal to the sum of A and B, according to the function Add(ison).

Lists
A data structure that holds 
multiple individual values gathered 
together under one variable name, 
accessed via indices. Similar to 
arrays and tuples.

File Input and Output
The complementary processes of 
saving data to a file and loading 
data from a file, generally such 
that the state of the memory of the 
program is the same after saving 
and loading have occurred.

Dictionaries
A data structure comprised of 
key-value pairs, where a key is 
entered into the dictionary to 
get out a value. Similar to or 
synonymous with Maps, Asso-
ciative Arrays, HashMaps, and 
Hashtables.

Passing by Value
An approach for passing 
arguments into a function 
where the function is not able 
to modify the variable whose 
value was getting passed, only its 
local parameter that accepts the 
argument.

Passing by Reference
An approach for passing 
arguments into a function where 
the function is able to modify the 
variable whose value was getting 
passed, changing it for both the 
function and the code that called 
the function.
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This is passing by value. You hollered to Addison the values themselves, 5 and 
2. Addison didn’t know 5 and 2 were stored in File A and File B. Then, Addison 
shouted back the value corresponding to the result. He didn’t know what you’d do 
with that value. All he knew was he needed to shout the value back. The key here is 
that it is the values themselves being shouted back and forth: Addison never knows 
your variables, and you never know Addison’s variables.

Passing by Reference: An Analogy
This interaction could have gone differently, though. Instead of shouting the values 
of File A and File B across the office, you could have instead walked by Addison’s 
desk and handed him the two files. Rather than simply telling you the value, now 
Addison himself erases the original value of File A and puts in the new value. He 
then brings the files back to you. The result is the same: File A holds 7, File B holds 
2 as it did at the beginning. Or, maybe he brings the values back to you as they 
were, and tells you verbally that the answer is 7. Either way, he had access to your 
variables and could modify them.

This is passing by reference. The major difference is that you and Addison 
are accessing the same variables. Note that the variables didn’t necessarily have to 
have the same name: Addison could have a different name he uses to refer to File 
A. What’s important is that during his operation, Addison could write to your vari-
able. When passing by reference, you’re handing the variable itself to the function, 
and the function can modify the variable’s value if it wants. When passing by value, 
you’re simply handing off the value, and the function can’t actually change the value 
of your variable.

Why does this matter? Imagine if Addison had a strange way of adding numbers. 
Instead of just adding them, he instead changes the sign of one number, then sub-
tracts it instead. So, when Addison receives 5 (File A) and 2 (File B), he changes 
them to 5 and −2, and performs 5 – (−2). The result is still 7. However, if you passed 
by reference, you handed Addison access to File B. He changed File B from 2 to −2. 
Now, when he hands you the files back, File B has been modified.

The difference between passing by value and passing by reference comes down 
to whether or not you want the function to be able to change the values of the vari-
ables directly, or if you simply want it to receive the values themselves without 
being able to access the variables. If you shout “5 and 2!” to Addison, he can’t 
change what you have written down; if you hand the papers to him, he can.

Terminology: By Reference
The term “passing by value” makes some sense. You’re passing some data into a 
function, and you’re doing it by passing a variable’s value. You’re passing the data 
by passing its value.

What does passing “by reference” mean, then? To understand that, we need to 
understand a little bit about the way a computer works on the inside. Imagine your 
computer like a giant file cabinet. It has thousands and millions of files. These files 
are the computer’s memory: they store everything that it knows at a given time. To 
access some data, you have to know where in the file cabinet the data is located. So, 
in our analogy, to access File A and File B, you have to know where they are.

Reference
An alias to a variable that already 
exists. Either the reference or 
the variable name can be used 
to access the value stored in that 
variable.

Figure 4.1.1
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So, are they just labeled “File A” and “File B”? No; they’re labeled with some 
far more cryptic identifier like E1557. These identifiers are systematic and ordered; 
that’s why they’re relatively easy to navigate. We know that E1557 will come after 
E1556 and before E1558. These identifiers are tough to use, though. So, we create 
more accessible names, like “File A”, and somewhere we have a key indicating, 
“File A can be found at E1559.”

Figure 4.1.2

Figure 4.1.3

That cryptic identifier is called a reference (or a memory address). It tells you 
where the variable itself can actually be found. When we pass by value, we grab the 
variable name (File A), find its reference (E1559), use the reference to find the value 
(5), and then tell the function the value (“Hey Addison, 5 and…”). The function 
never knows where the value came from.

When we pass by reference, we grab the variable name (File A), find its refer-
ence (E1559), and pass that reference directly to the function (“Hey Addison, the 
value stored at E1559 and…”). The function then looks up the value on its own, but 
because it knows the reference, it can change the value if it wants to. It doesn’t have 
to, but it can.

That’s why these two approaches are called pass by value and pass by reference. 
With pass by value, we simply tell the function what value to operate on; with pass 
by reference, we tell it where to find the value, such that it could change the value 
if it wants to.
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3.  Passing by Value and Reference in Python
Many languages let you define whether you want to pass an argument by value or 
by reference based on the way you write the function. In Visual Basic, there are 
reserved keywords ByVal and ByRef that tell the computer whether to send in 
the value or the reference. In C, the asterisk (*) character means “address of” or 
“reference to” a variable, so passing in the variable name with an asterisk means 
“the reference to” a variable, while passing in the variable name without an asterisk 
means “the value of” a variable.

In other languages, like Java, whether an argument will be passed by value or 
by reference is determined in the language. In Java, primitive data types like integers 
and characters are always passed by value, while advanced data structures like lists 
are always passed by reference.

How does Python work? We could just answer that, or we could actually take 
a look and see.

Integers: By Value or by Reference?
Note first that in Figure 4.1.5, we’ve started to include a label in our print statements. 
We’ll do that going forward to make our output a little easier to follow, even though 
it will make our code a little tougher to read.

We start by defining a function addOne() on line 2. addOne has one parameter, 
anInteger. It takes whatever argument is passed into anInteger and adds one to 
it. It does not return the result; it simply sets anInteger equal to anInteger + 1.

Outside the function, we create myInteger and give it a value of 5 on line 
7. We print it on line 8 to make sure its value really is 5 (it is). We then call 
addOne(), where myInteger becomes an argument to the anInteger parameter 

Figure 4.1.4

Figure 4.1.5
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in addOne(). anInteger is then incremented by one. We print anInteger on 
line 4 to make sure it now has the value 6 (it does).

Then, after the function call is over, we print myInteger one more time on 
line 11. If it was passed by value, it would now be 5: addOne() would never have 
access to the original variable, so it couldn’t change the value of myInteger; it 
only operates on anInteger, which was given the value of myInteger at the time 
of the function call, but from then on exists as its own variable. If myInteger was 
passed by value, it was as if addOne() made a copy of the value.

If myInteger was passed by reference, though, it would be 6 after the call to 
addOne(), because addOne() would be modifying the value of the original vari-
able itself; because it knows the references, it knows where to find it. If myInteger 
was passed by reference, it was as if addOne() was working on the same variable 
as the code that called it.

What is the result? When printed on line 11, myInteger retains the value 5, 
meaning that Python seems to have passed this by value rather than by reference. 
Note that later, we’ll see that Python actually does something slightly different: 
however, the result is functionally the same as passing by value.

Other Data Types: By Value or by Reference?
We noted above, though, that Java treats different data types differently. What about 
Python? Let’s check how it handles strings in Figure 4.1.6.

Figure 4.1.6

Figure 4.1.7

Just like Figure 4.1.5, we create a string myString on line 6, pass it into a 
function that will modify it on line 8, and check to see if that modification persists 
in the main program on line 9. We see that addExc successfully adds an exclama-
tion point to aString, its local variable, because there is an exclamation point in 
the text printed by line 3. However, myString remains unchanged when printed 
on line 9. So, Python seems to have passed this string by value, too. Modifying 
aString, addExc’s local copy of myString’s value, does not change the actual 
value f myString.

When we described Java, though, we mentioned it was Java’s primitive types 
that were passed by value. Strings are somewhat primitive in Python, so let’s see 
how Python treats something more complex, like a list. We don’t know much about 
lists yet, but this example doesn’t need much understanding of them. Still, if this is 
confusing, revisit this after reading Chapter 4.3.
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Figure 4.1.7 shows the result of this same kind of code running on a list instead 
of an integer or string. Now things are getting interesting, though. When we did this 
with integers and strings, the values of myInteger or myString were identical 
before and after the function was run, and only the value inside the function was 
different. Now with a list, though, the values of the list inside the function and after 
the function match, as shown by the second and third lines of the output. The new 
item in the list is still in the list out in the main program. You don’t need to worry 
about how lists work right now; all you need to notice is that the output of printing 
the list inside addItem() on line 4 matches the output of printing the list after 
addItem() on line 9.

This means that Python seems to pass primitive data types such as integers and 
strings by value, and advanced data types such as lists by reference, right? Practi-
cally speaking, yes. Accurately speaking, no! The ultimate effect is that it’s as if 
Python is passing these primitive data types by value, but in reality, something dif-
ferent is going on: Python has immutable data types. That gets tricky, though, so 
we’ll talk about that next lesson. For now, it’s sufficient to know: there are some data 
types that Python effectively passes “by value”, but for the majority of data types, 
Python passes by reference.

Variable Assignments
This is a good time to briefly look at a related dynamic in how variables are assigned 
in Python. There are some variable assignments that function similarly to how these 
function calls work

In Figure 4.1.8, we create myInt1 and give it the value 5 on line 1. Then we 
assign myInt2 to myInt1 on line 2. Then we change myInt1 to 7 on line 3. What is 
the result? myInt1 now has the value 7, its new value, as shown in the output of line 
5. myInt2, though, keeps the value 5, as shown in the output of line 6. So, myInt2 
isn’t set to equal myInt1 on line 2; it’s set to equal the current value of myInt1 on 
line 2. This is similar to our notion of pass-by-value, although this is assignment-
by-value. We assign myInt2 to the current value of myInt1. If the value of myInt1 
changes, it doesn’t change myInt2 because it was only set to the value of myInt1 
at one point in time.

Figure 4.1.8

What happens when we try that with a list? The same thing happens in Figure 
4.1.9 that happened with our function calls with lists in Figure 4.1.7. We create 
myList1 on line 1, then set myList2 equal to myList1 on line 2. We then change 
myList1 on line 3. When we print both lists, we find that myList2 still equals 
myList1 on lines 5 and 6. It’s been set equal to the reference to myList1. In other 
words, myList1 and myList2 now point to the same data: if we change myList1, 

Figure 4.1.9
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we’re actually changing the data that myList1 and myList2 both point to. It’s kind 
of like myList2 is following myList1 around, copying its data, but really, it’s not 
even copying it: it’s pointing to the exact same data.

To stick with our previous analogy, this is like you and Addison remember 
the location of a certain file in two different ways. You remember, “Oh, that’s 
file E1557”, while Addison remembers, “Oh, that’s the file in the second drawer 
of the third cabinet eight folders back.” These are two different “names” for 
the same file. If you modify file E1557, then you’re also modifying Addison’s 
second-drawer-third-cabinet-eighth-folder’s-file.

Or, to take an alternate analogy: you likely refer to your mother as “mom,” 
while others refer to her by her name. These are two different identifiers that point 
to the same underlying “data”. Saying “Margaret is my mom” means that anything 
that happens to “Margaret” happens to “my mom.”

4.  Mutability in Python
Mutability  is a simple idea with complicated implications. A variable is said to be 
mutable  if its value can change after it has been assigned; all the variables we’ve 
used so far have appeared to be mutable because we can always change their values 
by reassigning them. Inversely, a variable is said to be immutable  if its value cannot 
change. You may create the variable and assign it a value, but once that value has 
been assigned, it cannot be changed again.

Mutability vs. Passing by Reference
Python passes all arguments by reference. We noted above that, for all practical pur-
poses, Python seems to pass certain data types by value, and indeed, there’s really no 
functional difference between what it actually does and passing data types by value. 
However, our goal here is to learn computing, not just programming, so we should 
know what’s going on “under the hood.”

What’s going on in this case is that integers, floats, strings, and some other 
data types in Python are actually immutable. In fact, every data type that appeared 
to be passed by value is immutable. That means that once a variable of these types 
is created with a value, its value cannot be changed. To go back to our analogy on 
passing by reference, this is like handing Addison File A with the number 5 written 
in permanent marker. Yes, he knows where the file is located, but he can’t erase the 
current value; it’s written permanently.

So, the values of myInteger and myString in Figures 4.1.5 and 4.1.6 didn’t 
change because myInteger and myString were immutable. Their values can’t 
change. Simple, right? Not exactly.

Reassigning Immutable Data Types
The idea that integers and strings are immutable seems to be contradicted in the very 
same segment of code that is meant to demonstrate that they’re immutable. Let’s 
look at it again, shown here in Figure 4.1.10.

Mutability
Whether or not a variable can 
have its value changed after being 
declared.

Mutable Variable
A variable whose value can 
change after it has been declared.

Immutable Variable
A variable whose value cannot 
change after it has been declared.

Figure 4.1.10
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myInteger has the same value in lines 8 and 11 because myInteger is 
immutable, and therefore cannot be changed by addOne(). But wait: isn’t that very 
principle being contradicted inside addOne()? Isn’t anInteger also an integer, 
and isn’t its value being changed in line 3?

Or, to make this even simpler, we can consider just the block of code shown 
in Figure 4.1.11. We’re changing myInteger right there on line 2, and the 
print statement on line 3 confirms its value changed! So how can integer be an  
immutable data type? We just saw its value change in one of the simplest programs 
we can imagine.

Figure 4.1.11

Brace yourself, this is about to get weird.
In Python, we can’t change the value of an immutable variable. We can, however, 

change the reference of an immutable variable to point to a different value. That’s 
what’s happening here. We’re not technically changing the value of myInteger; 
we’re telling myInteger to point to the address of a different value.

This will hopefully make more sense in terms of our analogy. We have File A, 
and on File A is written 5 in permanent marker. We can’t change the number 5 on 
File A. However, imagine we want to change the value of File A to 7. What do we 
do? We take out a new sheet of paper, write the number 7 in permanent marker, and 
we say to ourselves, “Okay, this is now File A.” We never changed what was written 
on the original sheet of paper, we just changed what we named it. We wanted File A 
to be 7, so we said, “File A now refers to this other sheet of paper, on which is written 
the number 7.” If that feels like cheating, then you’re understanding it pretty well.

That’s exactly what Python is doing in Figure 4.1.11. When we call line 1, 
it creates the value 1 in memory, and points myInteger at 1. When we change 
myInteger to 2, it doesn’t change the same spot in memory where 1 was stored. 
Instead, it grabs a new spot in memory, puts the number 2 in it, and says that 
myInteger now points to the new spot. So, the 1 is still there.

Let’s tie this back to Addison. We drop File A and File B on Addison’s desk. 
They have the numbers 5 and 2 written in permanent marker on them. Addison 
wants to change the value of File A to 7. So, what does he do? He pulls out a sheet of 
paper, writes the number 7, and says to himself, “This is now my File A.” However, 
he doesn’t get to change what file we call File A. As far as we’re concerned, the 
original file with 5 written on it is still File A. That’s why the code in Figure 4.1.10 
behaved the way it did: addOne() only changes what its variable anInteger 
points to, not what myInteger pointed to.

Immutable Data Types: Functions vs. Local Assignments
Let’s alter the code a little bit to trace through this entire process. In Figure 4.1.12, 
we’ve added lines at the bottom to legitimately change the value of myInteger, and 
then print it again (lines 12 and 13). 

Running it, what do we see? When we attempt to change the value of my-
Integer in our main code at the bottom, it works! When we attempt to change it 
in addOne(), it only works on the local variable within addOne(), anInteger. 
Now, let’s trace through this and see why this happens.

As before, first we define the addOne() function on line 2. Then, in our main 
program code, we create myInteger and assign it the value 5 on line 7. That 
means that Python creates a memory spot and plops the value 5 in it, and then 
points myInteger to that memory spot. Then, on line 10, we call addOne(). 
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Python technically passes by reference, so anInteger is assigned to point to the 
same memory spot as myInteger. Were myInteger not immutable, that means if 
we changed anInteger, it would also change myInteger because they’re point-
ing at the same spot in memory.

However, myInteger and anInteger are both immutable. So, when line 
3 runs inside addOne(), the computer doesn’t change the number stored at that 
memory spot to 6. Instead, it grabs a new memory spot, puts in the number 6, 
and tells anInteger to point to that memory spot instead. So, the 5 is still there, 
anInteger just isn’t pointing to it anymore. So, when we print anInteger, we’re 
printing the value of the new location to which it’s pointing, which is now 6.

However, telling anInteger to point at 6 instead of 5 doesn’t change where 
myInteger points. myInteger is still pointing at 5. So, when we exit the function, 
printing myInteger still prints 5. In line 12, though, we reassign myInteger to 
point at 6 as well. So, when we print myInteger in line 13, we now see it show 
the value 6.

Printing Memory Addresses
That all brings us to one last interesting thing we can do in Python. We mentioned 
above how every variable name actually points to a spot in memory, and when we 
change the value of an immutable variable (like an integer), we’re actually changing 
where the variable name is pointing. To make this a little easier, we can print what 
spot of memory each variable is pointing at, as shown in Figure 4.1.13.

Figure 4.1.12

Figure 4.1.13

The id() function tells us what spot in memory a variable is pointing to. Here, 
it shows us that the variable myInt1 is pointing to the location in memory labeled 
1407565448. If a data type is immutable, it just means that while the program is 
running, the data stored in that spot can’t be changed. It’s written in permanent 
marker, so to speak. Using this new function, we can see the difference between 
mutable and immutable data structures, as shown in Figure 4.1.14.

When we make a change to the immutable variable myInt1 on line 5, the 
memory address to which it points changes, as shown on line 8. Notice that the 
first two print() statements in this code print myInt1’s memory address, but 
the memory address is different between the two. Line 5 changes what spot in 
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Figure 4.1.14

memory myInt1 points to. myInt1 is an immutable type, so to change its value, 
we have to change where it’s pointing in memory. 

When we make a change to the mutable variable myList on line 14, however, 
the memory address to which it points doesn’t change. Notice that the print() 
statements on lines 13 and 17 print the same number, 40885824. Note, however, 
that this only applies to changing the mutable variable. If we reassign it, it also gets 
a new memory address, as shown in Figure 4.1.15.

Figure 4.1.15

Running append() on line 5 changes the value of the variable, but it doesn’t 
change its memory address. This is confirmed by the print() statements on lines 
4 and 8 printing the same memory addressed. Reassigning it, however, does: notice 
that after running line 9 and assigning myList to a new list, the memory address 
for myList is changed, as shown by the print() statement on line 12. In this 
way, integers and strings really don’t behave all that differently; they just don’t have 
methods that change their values without reassigning them.

Finally, it’s this strange oddity of Python that makes the code in Figure 4.1.16 
print “True.” myInt1 and myInt2 are separately assigned to the value 5; yet, 
because Python creates 5 in memory, it simply assigns both variables to point at the 
same spot. So, not only do myInt1 and myInt2 have the same value, but they also 
refer to the same spot in memory. This only works because integers are immutable: 
otherwise, every time two variables coincidentally took on the same value, they 
would start interfering with each other.
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Mutable variables will behave differently, as shown in Figure 4.1.17. Just like 
myInt1 and myInt2, myList1 and myList2 are assigned the same value. Because 
they are mutable, though, Python creates that value twice in memory, assigning 
them to point at the different memory locations; so, it is False that their memory 
locations are equal, as shown by line 4. This is what allows us to call append() 
on myList2 without affecting myList1, as shown by lines 6 through 9: had they 
pointed at the same memory location, changing the value via one variable name 
would have changed the value for the other variable name. 

Figure 4.1.16

Figure 4.1.17

5.  A Brief Introduction to Methods
So far, we’ve glossed over a bit of syntax and promised to return to it later. For 
example, in the previous lesson we saw it with myList.append(). We noted 
earlier that the dot separates the variable, myList, from something resembling 
a function, append(). We’ve seen similar things in other places as well, like 
myString.isdigit(). We noted at the time to just remember what each 
individual example of this kind of syntax does, and not worry too much about 
the syntax.

Going forward into more advanced data structures, however, this syntax is 
going to become more common. We’ll talk about this more extensively when we 
discuss encapsulation in Chapter 5.1, but because we’ll see it more often in this unit, 
this is a good time to pause and comment a little more on what this is.

Functions vs. Methods
Previously we noted that this dot syntax behaved essentially like a function, and 
that’s still true. Just like functions, they have names, parameters, some internal 
operations or code, and they may or may not return some value. The way we’ve used 
them so far, they’re pretty indistinguishable from functions.

The difference is subtle. The functions we’ve defined have been defined at the 
top level of our programs. We’ve created them before actually writing the body of 
our programs, and that’s why they’re visible. Methods, on the other hand, are con-
tained within data types. Instead of just calling them directly like functions, we have 
to first say which variable we’re referring to, and then call the method inside them. 
So, a method is a function contained inside a data structure.

Methods
Functions that are contained 
within data types.
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Methods in Practice
What does this mean for us in practice? So far, we’ve mostly been manipulating our 
variables through operators. Operators work on simple data types. Going forward, 
we’re mostly going to be manipulating our variables using methods and functions. 
The reasoning necessary to manipulate advanced data types is too complex to be 
taken care of by simpler operators.

For now, though, you don’t need to worry too much about how methods work 
or the meaning behind their syntax; we’ll cover that in Chapter 5.1. For now, you 
really just need to understand what the effect of a method call will be. Let’s take a 
simple string method we’ve seen in the past: isdigit().

isdigit() is a boolean method that is part of the string data structure. It 
checks if the string represents a number. Note that just like functions, methods can 
have types as well: isdigit() returns a True or False value, but other methods 
could return integers, strings, or more complex data types just like functions. If we 
try to think of isdigit() as a function, though, we’re faced with a problem: how 
does isdigit() know which string to check? It doesn’t have any parameters! We 
can imagine an isdigit() function with the header def isdigit(aString), 
where it would check if aString is all digits. But the method isdigit() as 
defined has no parameters; how does it know what string to check?

The answer lies in the fact that isdigit() is contained within the string data 
type. That means every string has access to the isdigit() method. When called, 
the isdigit() method acts on whatever string called it, as shown in Figure 4.1.18. 
When we call myNumericString.isdigit(), isdigit() looks at myNumeric-
String. When we call myNonNumericString.isdigit(), isdigit() checks 
myNonNumericString.

Figure 4.1.18

In the past, we’ve used the example of Addison, where Addison was a function. 
Now let’s take another example. Imagine Dana is another co-worker, but let’s treat 
Dana as a variable of type Coworker. The Coworker type might have a method 
getMyName(), which is the equivalent of asking a co-worker for their name. When 
someone asks Dana her name, she doesn’t have to holler to some other function in 
the workplace and ask, “Hey, what’s my name?” She knows her name; it’s “Dana.” 
In fact, every co-worker knows their own name, but for every co-worker the answer 
is different. They all have the same method, getMyName(), which requires no input 
and returns a different result for each co-worker. The reason why is when asked their 
name, each co-worker knows to return their own name.

That’s like a method. A method is a function defined within a data type that 
must be called from a particular variable. When it’s called, it knows to look at the 
variable from which it’s called. myNumericString.isdigit() knows to check 
myNumericString, not myNonNumericString, just as Dana knows to give her 
own name, not Vrushali’s name when asked.

Equivalent Syntax
If this is still confusing, don’t worry. Like I’ve said, you don’t really need to under-
stand this too deeply until we get to Chapter 5.1. This is good exposure, but you’re 
safe to move forward without understanding this fully.
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If this is still confusing but functions made sense, then there’s a little equivalent 
syntax you can think of that will be true for the rest of this unit. A method is like 
a function that takes the variable referencing it as its first parameter. myString.
isdigit() can be thought of largely as the same as isdigit(myString), where 
isdigit() is a function that checks if myString  is all digits, as shown in 
Figure  4.1.19. This won’t work when we reach Chapter 5.1, but it’s sufficiently 
equivalent to let you proceed with Unit 4.

Figure 4.1.19
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189

Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to: 

•	 Examine the complexities involved 
in strings, including the role of 
Unicode in establishing character 
standards and use of special 
characters;

•	 Write programs to declare strings 
using multiple declaration styles, 
perform slice and concatenate 
operations, and use special 
characters as escape sequences;

•	 Write programs to perform string 
search and implement methods to 
modify strings;

•	 Modify turtle program to accept 
string input and generate 
processed output.

4.2Strings

c h a p t e r 

1.  What Are Strings?
At this point, we’ve already used strings a lot. It’s hard to even start writing pro-
grams that can be followed or do interesting things without using strings—at least in 
their simple form. We speak in natural language, so strings let us have our programs 
output natural language for us to understand.

However, strings are also pretty complex data structures; we’ve barely scratched 
the surface of how they’re used and why they’re valuable. At a fundamental level, 
strings are lists of individual characters; some languages actually represent them as 
such, while others represent individual characters as strings with length one. Either 
way, though, strings are often treated as lists of individual characters.

String and Alphabets
What makes strings complex, then? It seems like a list of letters, numbers, and 
symbols would be a simple data structure. What makes strings complex is of us 
pesky humans. Strings represent human alphabets and human languages. The alpha-
bet is surprisingly complex. Take, for example, something as simple as capital and 
lower-case letters. We pretty easily see ‘A’ and ‘a’ as two characters for the same 
letter, to be used in different contexts. We know that we would use ‘A’ if we’re start-
ing a sentence, starting someone’s name, or writing a book title; in other situations, 
we know to use ‘a’.

To the computer, though, ‘a’ and ‘A’ are entirely different characters, as dif-
ferent as b and Q. You might have seen that before: if you declared a variable with 
one capitalization scheme in one place, like myInteger, and another in another 
place, like MyInteger, the computer saw those as entirely different variables. It 
has no understanding that “m” and “M” are the same character unless we build such 
understanding into it.

This is where a lot of string complexity comes into play: we want to manipulate 
strings based on the way we actually represent human language, even though the 
computer has little knowledge of human language. For example, if we want to sort 
things alphabetically, we want to the computer to view ‘A’ and ‘a’ as equivalent 
characters On its own, it doesn’t do so, and this can lead to strings getting sorted 
with all uppercase letters before any lowercase letters. Things like converting letters 
to uppercase or removing trailing spaces in some text make perfect sense to us, but 
are arbitrary rules to the computer.

Unicode Characters
The relationship with the human alphabet is only half the story, however. Ask your-
self: what are characters? You might rightly say they’re the keys on your keyboard: 
letters, numbers, and some symbols. Those are certainly characters, but they aren’t 
all the characters. You might also rightly say that a symbol doesn’t have to be on 
the keyboard to be a character; ∞, Δ, →, •, and ÷ are all characters as well that you 

could include in your strings. Even emojis are technically characters: , , and 

are characters, too.

String
A data structure that holds a list, 
or a string, of characters.

Character
A single letter, number, symbol, 
or special character.
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Characters are defined by Unicode, a computing industry standard for handling 
text. Unicode defines hundreds of different characters in terms of their codes in 
hexadecimal, which is close to ones and zeroes inside the computer. Think about 
it: if a file is distilled all the way down to ones and zeroes, then when you receive a 
file, how does your computer know to render an “A” where the original author wrote 
an “A”? The answer is that both computers use the Unicode standard: they know 
when they see a character with the hexadecimal code 0041, that should translate 
to an A. That A might be rendered in different fonts or with different style, but it’s 
still the character A. The same way, every computer knows that 263A should be a 
simple smiley emoticon. It might be displayed differently based on whether you’re 
on Facebook, Twitter, or Microsoft Word, but the underlying standard is for that 
character to be a smiley face.

Special Characters
We’re not talking about this just so that we can start to use emojis in our code, of 
course (though feel free!). The reason this is complex is that everything plaintext-
related in computing is communicated through Unicode characters. By plaintext, we 
mean without formatting like font face, font size, bold and italics, color, and so on. 
We mean anything that can be expressed in a plaintext editor, like Notepad.

Yet, there are a lot of things contained there that you wouldn’t immediately 
recognize as characters. For example, you press Enter or Return to start a new line; 
how does that computer know to start a new line? Technically, there is a newline 
character. It’s invisible, you don’t see it, and yet it’s there: just as the computer 
shows the “a” character as the letter a, it shows a new line character as a break down 
to the next line.

There are lots of these “invisible” characters. Tabs, for instance, are characters 
that are rendered to have a certain width of whitespace. Paragraphs are their own 
characters, different from newline characters. There are actually two newline char-
acters: carriage returns and line feed. Have you ever created a plain text file on Mac 
OS or Unix and then opened it on Windows, only to find everything was on one line? 
That’s because Mac OS uses the line feed character to represent its new line, while 
Windows uses both carriage returns and line feeds. When Windows sees just line 
feeds, it doesn’t render them the same way.

Why does all this matter? The fact that these are stored as characters can alter 
the way we do some of our string manipulations. For example, let’s say we load five 
lines from a file, and print them each on their own line. Lo and behold, we might 
find that there’s a blank line between each pair of lines. Why? Because when we 
loaded the lines from a file, there was a new line character as part of the line. When 
we then printed each on its own line, it printed an additional new line character: the 
one in the string, and the one we printed between lines.

So, the conclusion is: strings are simply lists of characters. However, characters 
themselves are quite complex, between the relationships within the human alphabet 
and the special characters supplied by Unicode, and that can make string formatting 
pretty complex. The very fact that our code is also written in text is a good example 
of this complexity as well: we differentiate text in our code from the code itself using 
quotation marks, but what if we want to actually print quotation marks? The fact that 
we write code in text makes this an interesting little challenge.

2.  Declaring Strings in Python
I know what you’re probably thinking: we’ve declared lots of strings, why do we 
need to cover this again? So far, we’ve declared strings in a natural way, but we 
haven’t really talked about what we’re actually doing, or about how to deal with 
some interesting edge cases. So, let’s look at string declaration in a little more 
detail.

Unicode
A computing industry standard 
that sets what hexadecimal codes 
correspond to what characters, so 
that text appears consistent across 
platforms.

Hexadecimal
A short-hand expression of the 
ones and zeroes that comprise 
computer data, comprised of 16 
characters, 0 through 9 and A 
through F.

Newline Character
A Unicode character, either LF 
(line feed) or CR (carriage return), 
that is rendered as the beginning 
of a new line of text.

Figure 4.2.1
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Three Ways to Declare Strings
So far, we’ve always used one method to declare strings, as shown in Figure 4.2.2.

Figure 4.2.2

Figure 4.2.3

Figure 4.2.4

In Figure 4.2.3, Python gives us an error. How come? A quotation mark opens 
and closes the string. How could the computer know the second quotation mark was 
supposed to be a part of the string rather than the end of the string? Here, Python 
sees this as an empty string “”, followed by the number 12345, followed by another 
empty string “”, with no operators. It doesn’t know how to interpret that.

So, how can we include quotation marks in the string? Fortunately, Python gives 
us three ways to define strings, and we can use whichever way is compatible with 
the string content we want, as shown in Figure 4.2.4.

We can use quotation marks, apostrophes, or triple-apostrophes to declare 
strings. If we want our string to include quotation marks, we can instead declare 
it with apostrophes. If we want our string to include apostrophes, we can instead 
declare it with quotation marks. If we want our string to include both quotation 
marks and apostrophes, then we can declare it with triple-apostrophes (or triple 
quotation marks, even!). No matter what we use to start the string, the string does 
not end until we encounter that character or character sequence again.

Special Characters
We mentioned previously that everything in text is technically a character, includ-
ing things like tabs and line breaks. Can we then include these in our strings? Yes, 

myString on line 1 is the variable name, and to tell it that its data type is a string, 
we enclose the value assigned to it on the right in quotation marks. If we didn’t, it 
would become an integer with value 12345. Simple enough, let’s move on… except, 
there’s a special case we can’t handle here. What do we do if we want to put a quota-
tion mark inside a string? Right now the string’s value is the text 12345; what if we 
wanted its value to be “12345”, where the quotation marks were actually part of the 
value? If we just write the obvious declaration, we get Figure 4.2.3.
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though we have to know how. If we try to just put a newline character into the middle 
of a string, Python isn’t sure what to make of it, as shown in Figure 4.2.5.

Python sees line 1 as ending before the string is closed because Python inter-
prets the newline character in terms of the code, not as part of the string. In other 
words, Python sees the newline character at the end of line 1 as terminating line 
1 with an unclosed string, and it sees line 2 as starting with an unopened string. 
We need a character that tells Python, “Hey, when running this code, include this 
newline as part of this string.” It’s shown in Figure 4.2.6.

Figure 4.2.5

Figure 4.2.6

Figure 4.2.7

The character sequence \n in line 1 is translated by Python into the newline 
character. Whenever it sees \n it prints a newline. So, here, the newline character 
appears between “12345” and “67890” within the string, so Python prints a line 
break between the 5 and the 6.

This actually represents a general principle: inside a string, the forward slash 
is called an “escape” character, and it starts an escape sequence. When Python 
sees the forward slash, it tries to interpret it and the next character as a special 
sequence that carries special meaning. The \n sequence carries the special meaning 
“newline.” A couple of others are shown in Figure 4.2.7.

Escape Sequence
A sequence of characters that, 
when occurring in a string, is 
interpreted to have a meaning 
beyond the characters themselves. 
The most common example is 
“\n”, which is interpreted by 
many languages as representing a 
newline character.

In Figure 4.2.7, we see four escape sequences:

•	 \n, which inserts a new line.
•	 \t, which inserts a tab.
•	 \", which inserts a quotation mark without terminating the string (another way 

to include quotation marks and apostrophes inside strings).
•	 \\, which inserts a forward slash without interpreting it as an escape character 

(note that otherwise, the \n at the end of the string would have been a new line).
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Note that it’s also alright to simply put a tab directly into the string by pressing 
Tab inside of typing \t. However, most Python development environments will 
translate this into four spaces instead of a tab, so use \t to have a true tab character.

Note also that our triple-apostrophe method would let us simply write the new 
line directly, as shown in Figure 4.2.8. Python interprets strings started by triple 
apostrophes differently, and allows new lines in them.

Figure 4.2.8

3.  String Concatenation and Slicing in Python
We now have the ability to define lots of strings. What can we do with them? Here, 
we’ll talk about two common operations we want to do on strings: concatenation 
and slicing.

String Concatenation
String concatenation means putting multiple strings together. It comes from the 
word “concatenate,” which simply means to link things together in an ordered series 
or chain. We actually can just do this with the + operator, as shown in Figure 4.2.9.

String Concatenation
The process of putting two or 
more strings together in order 
to form one string made of the 
individual strings. For example, 
concatenating “A” with “B” would 
give “AB”.

Figure 4.2.9

In Figure 4.2.9, we see three kinds of concatenation. We declare myString1 
and myString2 on lines 1 and 2, then concatenate them and assign the result to 
myString3 on line 3. The result is the two strings squished together into one, as 
shown when we print myString3 on line 4. Then, on line 5, we do the same thing 
in-line: they don’t have to be assigned to a separate variable to do this. Then, on line 7,  
we also do this with self-assignment concatenation: we set myString1 equal to the 
concatenation of itself and myString2, and line 8 confirms the results are the same. 
So, generally, the + operator tacks each string on to the previous string. Note that 
technically, we’re seeing string concatenation with the labels, too. Line 4 technically 
concatenates “Assignment Concatenation: ” and the value of myString3 together 
to print them as one string, “Assignment Concatenation: 1234567890”.

Notice how this works if we throw in a newline character in Figure 4.2.10. When 
we print a string with a newline character inside it on line 3, we get an extra blank 
line: print() automatically ends with a newline character, so having one inside 
the string adds a second newline. Then, when we concatenate myString1 and its 
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newline character with myString2 on line 5, printing them together breaks the 
second half onto its own line; technically, we’re printing “In-Line Concatenation: 
12345\n67890”, and Python interprets the \n as the escape sequence for a newline.

String Slicing: Individual Characters
String slicing is Python’s term for finding substrings within a broader string. 
Imagine you have a string: how do you get just the first 5 characters? The last 5? 
The middle 5? String slicing is the answer.

Let’s start simple. How would you get just a single character out of a string? 
Python has some dedicated syntax for that: brackets. Whenever you have a data 
structure that is a list of multiple items, you can follow the variable name with brack-
ets and a number, called the index, to get a certain item from the list.

String Slicing
The Python term for obtaining 
substrings from within a string 
based on character indices.

Figure 4.2.10

Figure 4.2.11

Figure 4.2.12

The tricky thing here is that Python treats the first item in a string as the 
“0th” item. So, to get the first item, you ask for the 0th item, as shown in line 4 
of Figure 4.2.11. This is called zero-indexing: the indices of a list start with 0. It 
also means that the last item in the list is one fewer than the length of the list, and 
if we try to access a list item that doesn’t exist, we get an error, as shown in line 
7 of Figure 4.2.12.
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IndexErrors are the error that arises when we try to access an index that 
doesn’t exist for a particular list. In Figure 4.2.12, the index 5 does not exist because 
the characters in a five-character string are numbered 0, 1, 2, 3, and 4. Remember 
also, strings are immutable, which means we cannot use this syntax to change indi-
vidual characters, as shown in line 2 of Figure 4.2.13.

Figure 4.2.13

We run a for loop from 0 to 2, grabbing characters 0, 1, and 2 from myString 
and adding them to mySubstring. That was a lot of work to do that; there has to be 
a better way. One better way would be to create a function that just takes as param-
eters the string and the number of characters, and in fact, that’s how many languages 

The fact that we can traverse each character of a string that way is a useful 
takeaway on its own. However, there’s no straightforward way to stop the for-
each loop on line 4 before it reaches the end of the string, and in this example, we 
wanted to grab just the first three characters. So, we could do this the hard way, with 
a regular for loop from 0 to 2, as shown in Figure 4.2.15.

Why zero-indexing? This goes all the way back to the early days of computing. 
Remember, a variable points to a place in memory where the value is stored. Early 
on, lists were technically just consecutive locations in memory. The index told the 
list how many places in memory to skip. To get the first item in a list, you wouldn’t 
skip any places in memory, so your index would be 0. Saying “skip 5 items” with a 
5-item list would skip the entire list, triggering the IndexError.

String Slicing: Substrings
But what if you want to create a string made up of a part of another string? What if 
you wanted to grab the first three characters and create a new string? Remember, we 
can traverse a string with a for-each loop, as shown in Figure 4.2.14.

Zero-Indexing
A convention in most program-
ming languages where the first 
item of a list of items is considered 
the “0th” item, not the 1st item.

Figure 4.2.14

Figure 4.2.15
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do this. However, Python makes this even simpler with its string slicing syntax, as 
shown in Figure 4.2.16.

In Figure 4.2.16, we’re using the same brackets on line 4 that we used before, 
but instead of just putting a single number, we put two numbers with a colon in-
between. The number before the colon is the start index, and the number after is the 
end index. The substring will be the characters from start (inclusive) to end (exclu-
sive). In other words, it will include the character with the starting index, and stop 
before the character with the end index. So in line 4 of Figure 4.2.16, the substring 
is from 0 to 3, so characters 0, 1, and 2 are included.

One nice thing about this is that we don’t need to use variables: we can put in 
the indices directly, as shown in lines 2 and 3 of Figure 4.2.17. That’s much simpler 
than our for loop!

Figure 4.2.16

Figure 4.2.17

Figure 4.2.18

Python also takes this a step further by allowing us to omit either the start or 
end, as shown in Figure 4.2.18. If we skip the “start” number as shown in line 2, 
Python assumes 0. If we skip the “end” number as shown in line 3, Python assumes 
“to the end.” If our “end” number is beyond the length of the string as shown in line 
4, then Python stops at the end of the string.
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Negative Indices
Those methods all covered getting things like the “first five characters” or “char-
acters three through eight.” How do we get the last several characters in a string, 
though? What if we wanted to get the last two letters of a string?

We could do it the hard way. The hard way would be to use the length of the 
string to figure out what index to start at to get the last few characters. For example, 
if we wanted the last two characters, we’d start at the length of the string minus two, 
as shown in Figure 4.2.19.

Figure 4.2.19

Figure 4.2.20

Line 2 here says to start at the beginning (because there is no “start” index in 
the brackets), and go until 2 characters from the end; this is the meaning of -2 as the 
“end” index. So, an index of 2 for “end” would mean to include the characters until 
2 from the start, and an index of −2 for “end” would mean to include the characters 
until 2 from the end. Similarly, if our “start” index is −2 as on line 3, it means to 
start two indices from the end.

4.  String Searching in Python
Back when we talked about logical operators, we talked about string equality. Spe-
cifically, we talked about how two strings are equal if they have the same characters, 
and one string is “greater” than another if it comes later alphabetically. Earlier in this 
chapter, we briefly noted that natively, many languages—Python included—process 
uppercase and lowercase letters separately, meaning that all the uppercase letters 
will be sorted among themselves before any lowercase letters. 

Those rules generally take care of string comparisons, whether two strings are 
equal or if one is “greater” than another. However, there’s more we can do with 
strings, including checking to see if a substring is present in a string and, if so, where.

That works, but that’s really complex. We have to find the end of the string, 
count backward by two, then count forward again. It works just fine, and in many 
languages this is exactly what you have to do. Python tries to make things easier, 
though, with negative indices. Negative indices (i.e., using a negative number as an 
index) count backward from the end of the string, as shown in Figure 4.2.20.
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The In Operator
When we covered operators, we talked about the in operator in Python. The in 
operator is unique; it seems to take on different meanings when used in a for loop 
(e.g., for i in range(0, 3):) and in a conditional (if “Bob” in myList:). 

The in operator can be used with strings to check if a substring is part of a 
string, as shown in Figure 4.2.21. The conditional on line 3 correctly identifies that 
“BC” is in the string “ABCDE”, and the conditional on line 8 correctly identifies 
that “GH” is not in the string.

Figure 4.2.21

Figure 4.2.22

Figure 4.2.23

Similarly, we could use not in to check the inverse, as shown in Figure 4.2.23. 
Same result here, but the reasoning is in reversed. If it’s not in the string, we print 
that it’s not in the string; else, we print that it is.

In reality, we would probably package this together as a function, as shown in 
Figure 4.2.22. So, we can use the in operator to check to see if a string is present 
in another string. 
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The Find Method
Sometimes, though, we’re not just interested in finding out if a string is in another 
string. Oftentimes, we want to know where it was found. That’s where the powerful 
Find method comes in handy. The Find method, find(), is a member of the string 
type, and it takes as input the substring to find, then returns the index where it was 
found or −1 if it was not found.

In Figure 4.2.24, “CDE” starts at index 2 in myString (due to zero-indexing, 
“A” is 0, “B” is 1, and “C” is 2, so “CDE” starts at 2), so myString.find(“CDE”) 
on line 4 returns 2. “ACE” is not found in myString—while each individual char-
acter is in “ABCDE”, the continuous string “ACE” is not found. So, myString.
find(“ACE”) on line 6 returns −1.

find(text, [start], [end])
A method of the string data type 
that will find the first instance of 
the value of text within the string 
calling the method. Optionally, 
also takes parameters start and 
end to mark where to search in the 
string.

Figure 4.2.24

Figure 4.2.25

Before that, though, note also that the find() method is case-sensitive, as shown 
in Figure 4.2.27. Remember, the computer doesn’t see “c” and “C” as the same char-
acter; they’re as different as “b” and “Q”. So, searching for “cde” on line 4 won’t 
turn up anything in “ABCDEABCDE”.

As shown on line 4 of Figure 4.2.26, find() only finds the first index; after all, 
it can only return one number. We’ll talk in a moment about how to use find() more 
flexibly.

Note that in this way, find() subsumes all the reasoning of the in operator, as 
shown in Figure 4.2.25. If the result of find() is positive on line 3, it means that 
the substring was found; if it’s negative, it means it wasn’t found. What happens, 
though, if the string we’re trying to find is in two places in the string that we’re 
searching?

Figure 4.2.26
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Parameters of the Find Method
We can extend find() by using some of its optional parameters. Optionally, we can 
supply two additional arguments to the find() method: start and end. start tells 
find() where to start looking, and end tells it where to stop looking. If it isn’t found 
after start and before end, it returns −1.

Figure 4.2.28 shows five different find() calls on myString using “CDE”. On 
line 4, it finds the first index of “CDE” at 2. On line 6, it searches only after the index 
5; the first occurrence of “CDE” after the index 5 is at 7. On line 8, it searches only 
after the index 13; “CDE” doesn’t occur after 8, though, so it returns −1 to say the 
string was not found. On line 10, it searches only between the indices 4 and 10; the 
first occurrence there is at 7. In this way, it skips both the first and last overall appear-
ances and only gets the one in the middle. Then, on line 12, it searches between 3 
and 6, but finds nothing and returns −1.

Figure 4.2.27

Figure 4.2.28

Figure 4.2.29

We first create the string to search on line 1, myString, and the string to search 
for on line 2, findString. Then on line 4, we get the first location of findString in 
myString and assign it to currentLocation to get our loop started. Then start-
ing on line 7, we run a loop while currentLocation is greater than 0, and on line 
11 at the end of each iteration of that loop, we search myString again starting at 
the last found location (as given by the currentLocation + 1 parameter). Since 
find() always finds the first instance after a certain index, that guarantees we’ll find 

We can use find() to build a list of all the appearances of a particular string 
within another string. We’ll talk about making it a list later; for now, let’s just print 
out all the indices. Figure 4.2.29 shows the code to do this—we’ll make the string 
we’re searching a little longer and more complicated to make things interesting.
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the instances in order. When we run out, that means findString wasn’t found, so 
find() will return −1, terminating the while loop.

So, let’s step through this. Initially, currentLocation is assigned to 2, the 
first location of “CDE”. 2 >= 0 is True, so the while loop runs, printing that “CDE” 
was found at 2. Then, it searches again, starting at index 3. Because the search starts 
at index 3, it won’t find the instance starting at 2 again. Instead, it finds the next one, 
at 7. 7 >= 0 is still True, so it prints and finds the next location. This continues for 
12, 27, and 32. After 32, though, this code calls find() starting at index 33. There 
are no instances of “CDE” after 32, though, so this call to find() returns −1. Now, 
it’s not True that −1 >= 0, so the while loop terminates.

Note that if findString is not found anywhere in myString, then the initial 
assignment to currentLocation will be −1, and the while loop will never run 
even once, as shown in Figure 4.2.30. In this way, we can build a segment of code 
that gathers every instance where a particular string was found in another string.

Figure 4.2.30

Figure 4.2.31

5.  Useful String Methods in Python
Last chapter, we covered methods at a high level, just to familiarize ourselves with 
method syntax. The reason was that although we have seen a few methods before, 
now we’re going to start seeing them even more frequently. That starts here with 
strings. Strings in Python have lots of useful methods for us to use. Let’s take a look 
at several of them.

Split()
The split() method divides the string up into several substrings based on the 
separator character. The simplest case, when no arguments are given to split(), 
is that it splits the string up by spaces, as shown in Figure 4.2.32.

In Figure 4.2.32, myString is a long string with 13 words. When we call 
myString.split() on line 3, it splits it up by the space character. The result is 

split([separator])
A method of the string data type 
that will split a string up into a list 
of smaller strings. If a separator 
string is given, that string will be 
used to determine where to split; 
if not, the string will be split by 
spaces.

Note that we can also use a different method, count(), to simply count the 
instances without finding them, as shown in Figure 4.2.31. This confirms there 
are five instances of “CDE” in myString. count() can also take the same 
parameters as find(), start and end to mark off within what portion of the 
string it should count. Note also this is a somewhat complex print() statement 
on line 3: we have our label, “Count of”, which is concatenated with the value of 
findString and a colon. That is then also concatenated with the result of my-
String.count(findString).
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a list of 13 strings, each one word from the original string. It removes the spaces 
themselves as well.

We can also specify our own unique separator as an argument to split(), as 
shown in Figure 4.2.33. Here, instead of splitting the string up into 13 strings based 
on spaces, it splits it into 4 strings based on periods. Note, though, a couple issues. 
First, the spaces at the beginning of each sentence are still there. Second, there’s an 
empty string at the end: Python sees the period at the end and splits between two 
strings, regardless of the fact that nothing comes after that period.

Figure 4.2.33

Figure 4.2.34

Figure 4.2.32

This split() method is especially useful when we deal with comma-, tab-, or 
newline-separated lists. It’s common to ask users to enter multiple options separated 
by commas. For example, imagine we were asking the users to enter the first names 
of each person they want to e-mail as part of an e-mail application. We could have 
them enter the names one at a time until they type “exit” or something similar, or 
we could have them enter the names all at once separated by commas. Then, we can 
use the split() method with “,” as the argument to pull out the individual names, 
as shown in Figure 4.2.35.

Note that we don’t necessarily know if the user will put spaces after commas or 
not. We don’t want to split based on “, “ (with a space) because then it will not split 

We can resolve this by instead splitting on the entire “.” string, as shown in 
Figure 4.2.34. This still isn’t perfect; this means that Python removes the period 
character from the first two sentences (since it’s part of the “.” string being used to 
split), but not the third. Still, we’re closer now to what we wanted.
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if they don’t, but we don’t want to include the spaces either if they do. The easiest 
way to do this will be to strip out the whitespace at the beginning and end of each 
string after calling split(), which we’ll cover next.

Useful String Methods
The Python string class has a lot of utility methods for modifying our strings in 
predictable and useful ways. Here are a few of them:

•	 capitalize(). Makes the first letter of the string uppercase and all the rest 
lowercase, and returns the result.

•	 lower(). Returns a version of the string with all uppercase letters changed to 
lowercase.

•	 upper(). Returns a version of the string with all lowercase letters changed to 
uppercase.

•	 title(). Returns a version of the string with each word (e.g., letter following 
a space) capitalized.

•	 strip(). Returns a version of the string with any whitespaces (spaces, line 
breaks, etc.) at the beginning and end of the string removed. rstrip() and 
lstrip() apply this strip() method only to the right or left sides of the 
string.

•	 replace(old, new). Replace all occurrences of the substring old with the 
substring new.

•	 rfind(findString). Just like find(), but returns the last index of findString 
instead of the first.

•	 join(list). Creates a string where each item in the list is followed by the 
string, and returns the result.

Figure 4.2.36 shows a demonstration of those methods in action. Notice that 
myString is the same on line 13 as on line 2; these methods return the result of the 
change, but they leave the original string unaffected. So, to store the results of these 
method calls, we would need to assign the result to a new string, e.g., newString 
= myString.lower().

Figure 4.2.35

Figure 4.2.36
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Among these, likely the most interesting and most confusing is the join() 
method. Note that on line 11, we’re calling the join method not on myString, 
but on the string “-”. myString is an argument to join() here, not the string 
calling join(). The join() method takes a list of items and merges them into 
one string, joined by the character on which you’re calling the join() method. 
In that way, the join() method is like the reverse of the split() method, as 
shown in Figure 4.2.37.

Figure 4.2.37

In Figure 4.2.37, we initially split myStringToSplit into its individual 
parts based on where the hyphens are located. We print it and see a list of each 
individual string that had previously been separated by hyphens. Then, we call 
join(mySplitString) on the simple string “-”, and Python merges the items on 
the mySplitString, joining them with the “-”.

Additionally, Python has some interesting boolean methods that simply check 
if certain criteria are true about the string, returning True if so and False if not:

•	 endswith(suffix). Returns True if the string ends with suffix, False if not.
•	 startswith(prefix). Returns True if the string starts with prefix, False if 

not.
•	 isalnum(). Returns True if the string is all letters and numbers, False if not.
•	 isalpha(). Returns True if the string is all letters, False if not.
•	 isdecimal(). Returns True if the string represents an integer or decimal 

number, False if not.
•	 isdigit(). Returns true  if the string is all numbers (e.g., represents an 

integer), False if not. isnumeric() is similar, but supports fraction and other 
characters as well (which are rarely used).

•	 islower(). Returns True if the string contains no uppercase letters, False 
if not.

•	 isupper(). Returns True if the string contains no lowercase letters, False 
if not.

•	 istitle(). Returns True if the string is in title case, meaning each word is 
capitalized, and False if not.

6.  Turtles and Text
In this chapter we’ve been talking all about strings, but it would seem that wouldn’t 
have a lot to do with our turtles program. Sure, we accept user input in text, but those 
are pretty simple commands that just get fed into our conditional. Can we really do 
anything more complicated than that?

That would be true, except for the turtle.write() method. The turtle.
write() method takes as input a string (and, optionally, an alignment, a font, and 

turtle.write(message, 
[move], [align], [font])
A method of the turtle library that 
will write the given message on 
the canvas. If move is True, it will 
move the turtle along with the text. 
Align determines whether the text 
is left, right, or center aligned, and 
font is a three-tuple that contains 
the font face, size, and style.

204	 Chapter  4.2  Strings

16_joy8227X_ch04.2_p189–206.indd   204 29/11/16   11:47 am



a setting whether to move to the end of the written text), and in turn writes the given 
message to the screen. Now, suddenly, anything we’ve been doing with our strings 
can be written by our turtles! So, let’s create a simple function for this, one that will 
just write the user’s message at the current point. We’ll find, though, that it isn’t 
quite that simple if we want the user to put in multiple lines of text.

The Text Function
After revising our code to allow a new “text entry” option, we get TheTextFunction.
py. Run it, enter the “text” command, and type “Hello, world” to see this option in 
action.

First, let’s do a little cleanup. The print statement where we ask the user to enter 
a command is getting pretty long. So, we’ve switched it to print the options on one 
line (line 37) and get the input on the next (line 38). After that, we add a new elif 
to our conditional on line 70: “text”. If the user enters “text”, they’re prompted to 
enter the message that they’d like to print on line 72. After entering the message, it’s 
printed on the canvas on line 74.

This is a single method call, so we don’t really gain anything by wrapping it in 
a function. For now, we’ve forced certain options as well: we’ve set the font size to 
16, the font face to Arial, and the style to normal to keep things simple.

Penup and Feedback
Running TheTextFunction.py, though, we quickly run into an issue: while it’s good 
for the turtle to move to the end of the text it drew (so we can write multiple mes-
sages in a row), that draws a line under the text, which could get a little ugly. So, in 
PenupAndFeedback.py, we’ve added two new commands here on lines 78 through 
88: penup and pendown. These simply turn drawing off and on. If the turtle moves 
with the pen up, it won’t draw a line, so now our users can move the turtle around 
the canvas without necessarily drawing the entire trail!

Notice, however, that the penup and pendown commands wouldn’t have any 
automatic feedback to the user; how do they know they’ve worked? Other com-
mands draw lines or show rotation, but these cause no immediate visible change. 
So, to help the user know the command registered, we have added print statements 
here to confirm the action was executed. This is the valuable principle of feedback 
at work: the user should be able to immediately tell that their input was received and 
correctly recognized.

The Text Function and Newlines
Now let’s take a quick closer look at this. We mentioned earlier the escape sequence 
\n. Could the user enter “\n” to write text on multiple lines? Try it out and see: enter 
a string into the text command with “\n” in the middle.

As you’ll see, no! If the user enters “\n” in their text, Python just prints the 
characters “\” and “n”. Why is that? Why doesn’t Python interpret this as the escape 
sequence? Let’s find out. Let’s print the user’s input after the text entry line to see 
how Python is interpreting it. We won’t include a file for this here, but try printing 
message after line 72. What do you see?

When we print the message directly, we see something similar: Python prints 
“\n”. So, the string is properly included. But wait: earlier when we included “\n” 
in a string, Python translated it as a newline… unless the slash was preceded by 
another slash! When we included “\\n” in our string, Python printed “\n”, but when 
we included just “\n”, it printed a newline. So, if it’s printing the “\n” here, it must 
be storing it as “\\n”! Python must be automatically converting the user’s “\n” into 
“\\n” so that it will print the string as the user inputted it.

turtle.penup() and turtle.
pendown()
Two methods of the turtle library 
that toggle off and on, respec-
tively, whether the turtle draws 
lines as it moves.
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So, if we want the user to use “\n” in their input to separate lines, we need to 
replace any instances of “\\n” with “\n”. So, before printing the message, we add a 
simple call to the replace() method on line 74, and the result is shown in The-
TextFunctionandNewlines.py.

By replacing “\\n” with “\n”, we achieve the result we wanted, and the user is 
able to enter text on two lines. We should add a note for the user about that as well: 
that keeps the option discoverable. Interestingly, to include that note in our prompt, 
we have to use the double-slash again: “use \\n to designate a newline” will render 
only one slash.
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Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to: 

•	 Recall the concept of list data 
structure, its properties, and 
advanced list-like structures, 
including stacks, queues, and 
linked lists;

•	 Create tuples in their programs, 
including nested tuples and 
perform read and write operations 
on them;

•	 Write programs to implement 
lists, perform iterations, and to 
learn the difference between lists 
and tuples;

•	 Use the tuples and lists to pass 
information around a turtle 
program and record information 
about it.

4.3Lists

c h a p t e r 

1.  What Are Lists?
List-like structures are data structures that themselves store multiple values. For 
example, think of a file folder (a real one, in a file cabinet, not one on your com-
puter). In one sense, you could think of that folder as a singular object. In another 
sense, you could think of it as a container of several other objects, each individual 
page inside the folder. If someone were to ask you for the folder, you could give 
them the folder; yet, the folder on its own is not data, it just contains other data.

That’s effectively what a list is: a single variable that contains multiple values. 
Actually, this definition is even a little too broad: this would encompass other data 
structures that we’ll talk about later. More specifically, lists are variables that con-
tained ordered lists of values, accessed via numbers called indices (plural for index).

Properties of Lists
We’re starting to get into the more advanced areas of computing, and so as we go 
forward, fewer and fewer things will be common across multiple languages. Lists 
are a good example of this. Nearly every programming language has some concept 
of a list, but the terminology and specific details differ significantly.

One major way different languages differ in their implementations of lists is 
mutability. Mutability for a list can involve two things: one, whether the values of 
the list can be changed, and two, whether the size of the list can be changed. Some 
list implementations will freely let you keep appending new items to the end, while 
others require you to state in advance how many items can fit in the list. Generally, 
the latter is more common for lower-level languages like C, where we manage 
memory more deliberately.

Another major way list-like structures may differ is whether they accept mul-
tiple types. This is called homogeneity in lists. In some list implementations, every 
item in a list must be of the same type: you can have a list of integers, a list of strings, 
or a list of dates, but you can’t have a single list that has integers, strings, dates, and 
other types. Other languages don’t have this restriction.

There are benefits to these different properties, so many languages will provide 
multiple ways to use list-like structures. What, then, defines a list? A list is a data 
structure that contains multiple values, accessed via an ordered numerical index; in 
other words, lists will have a first value, a seventh value, and so on. This is in con-
trast to Dictionaries, HashTables, and other data structures that also contain multiple 
values, but that access them via non-numeric keys.

List Synonyms
List-like structures go by various names: lists, arrays, tuples, vectors, tables, and 
more. The specific terms used depend on the language. Java, for example, uses 
“array” and “list” to refer to different things. “Tuple” is most commonly used in 
Python. Oftentimes, “array” is used to refer to a more primitive structure that only 
supports changing the existing values, whereas “list” refers to more complex data 
structures that support sorting, inserting, and other operations. “Tuples” are often 
immutable.

List-like Structures
Also referred to as sequences 
and collections, a data structure 
that holds multiple individual 
values gathered together under 
one variable name, accessed via 
indices. Includes to lists, arrays, 
and tuples. Lists are simultane-
ously a type of data structure 
and a specific type in some 
languages.

Homogeneity
A property of lists determin-
ing whether they can accept 
multiple types of variables. A 
homogenous list can only accept 
one type of variable; a non-
homogenous or heterogenous 
list can accept multiple types.
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As noted above, which specific implementation you’ll use depends on your 
language. The commonality among these list-like structures is that they contain an 
ordered series of values accessed via numeric indices.

2.  Tuples in Python
Python has two major list-like structures: tuples and lists. Tuples are immutable, 
lists are mutable. The immutable type tends to be simpler because it can’t be modi-
fied after it’s declared, although for the same reason it tends to be less useful. So, 
let’s start with tuples, then move on to more advanced lists.

Declaring Tuples
To declare a tuple, we set a variable equal to a comma-separated series of values or 
variables, as shown on line 2 of Figure 4.3.2. Here, we’re creating a tuple (called a 
3-tuple because it has three values) with the values 1, 2, and 3. We’ve done this here 
in terms of values, but if we use variables, it still pulls out the values and creates a 
tuple with these values, as shown on lines 7 and 8 in Figure 4.3.3.

Tuple
An immutable form of a list-like 
structure in Python.

Lists
A mutable form of a list-like 
structure in Python. Figure 4.3.2

Figure 4.3.3

Note that the parentheses are optional in both Figure 4.3.2 and Figure 4.3.3; 
the same result would occur from myTuple = 1, 2, 3 and myTuple = myInt1, 
myInt2, myInt3. The parentheses are always optional except for in those places 
where they would make a difference, such as differentiating passing a tuple to a 
function from passing three arguments. However, I recommend including the paren-
theses. They never hurt, and they sometimes help.

Tuples can have multiple data types within them. For example, we could create 
a tuple of a string, a float, and an integer, as shown in Figure 4.3.4. Here, the first 
value of the tuple is a string, the second is a float, and the third is an integer. This 
follows Python’s general procedure of being loosely typed: Python never really 
cares what data types you’re using until you try to do something that doesn’t make 
sense. Imagine, though, if you assumed every value in the tuple was a string and 
attempted to call isupper() on each to check if they were uppercase. That would 
crash on the second item in the tuple because it isn’t a string, so we need to be 
careful to know what data types we’re dealing with.

Figure 4.3.1
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Reading Tuples
To access the individual items of a tuple, we use the same syntax we used for access-
ing individual characters in a string. As far as Python is concerned, strings, tuples, 
and lists are all pretty much the same.

Figure 4.3.4

Figure 4.3.5

Figure 4.3.6

As shown in lines 10, 12, and 14 of Figure 4.3.5, to read an individual value 
from a tuple, we simply place the index in brackets after the variable name to access 
that specific element. This analogy to strings extends to slicing as well. We can 
access individual parts of the tuple using the same syntax we used with strings. 
Figure 4.3.6 shows a long tuple with some examples of slicing it the way we sliced 
strings on lines 11 through 19. All the same splicing syntax we used for strings 
works here for tuples as well.
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Tuples also have a handy syntax for unpacking them, shown in line 11 of 
Figure 4.3.7. While technically this doesn’t allow us to do anything we couldn’t 
do before (since we could have referred to the tuple parts by index whenever we 
needed them), it allows us to easily unpack the parts of a tuple into variables with 
self-documenting names again rather than remembering what kind of data is held 
at each index.

Figure 4.3.7

Usefulness of Tuples
Given that tuples are immutable, they lack some of the value of traditional lists. We 
would not use tuples to store a list of students on a class roster, for example, because 
students might enroll or drop, and a tuple could not add or remove those students. 
Similarly, we would not use tuples to store data that we want to sort because the 
element order cannot be changed.

In that case, what are tuples good for? You might be tempted to say, “A tuple lets 
me use fewer variable names!”, but that’s not inherently a good thing. Remember, 
we want our variables to be self-documenting, and having to remember which index 
corresponds to which value isn’t self-documenting.

Rather, the real value of tuples comes in places where we can only pass one vari-
able back and forth, but we want to pass multiple values. The most prominent example 
of that is the return statements of functions. A function or method can only return one 

Figure 4.3.8
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Nesting Tuples
Finally, tuples can be nested. You can have a tuple of tuples. First, we could do this 
by creating tuples, and then creating a tuple that contains those tuples, as shown in 
lines 1 through 5 in Figure 4.3.10.

Figure 4.3.9

value, but if it returns a tuple, it can actually return multiple values contained within that 
list. The receiving code merely needs to know what is located at each index of the tuple.

Let’s try an example of this: imagine we want to tie together floor division and 
modulus so that we can call one function and get both the quotient and remainder 
for a division operation.

In lines 2 through 8 of Figure 4.3.8, we define a function quotientAnd­
Remainder that takes as parameters a dividend and a divisor. It calculates the 
quotient and remainder, then returns a tuple containing the quotient in the first spot 
and the remainder in the second on line 8. The main code of the program on lines 15 
and 17 knows (because we told it) that it can find the quotient in the first spot and 
the remainder in the second, so it prints them. Thus, we’ve returned two values with 
one function by packaging them as a tuple.

We can actually make this code shorter and more readable respectively by 
performing the operations in the tuple assignment and by using the unpacking trick 
we saw earlier, as shown in Figure 4.3.9. Here, we skip creating new temporary 
variables to hold the quotient and remainder by calculating them on line 4, and we 
make our code more readable by unpacking the resultant tuple into myQuotient 
and myRemainder on line 10 instead of referring to these values as tuple­
Results[0] and tupleResults[1]. This gives tuples what appear to be some 
considerable power. However, we’ll later see that Dictionaries are actually even 
better for this, at least in some ways.

Figure 4.3.10

The nested sets of parentheses in the output of Figure 4.3.10 show that these are 
nested tuples: the outer set of parentheses defines the tuple as a whole, and the inner sets 
of parentheses define each smaller tuple. You might notice that it looks like this syntax 
could be used in-line as well, and you would be correct, as shown in Figure 4.3.11.
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Remember, tuples are like strings and all other list-like structures in Python: 
they’re zero-indexed. So, to get the first item, you request the item at index 0. This 
is why requesting mySuperTuple[1][0] yields 4: mySuperTuple[1] yields the 
second tuple, and mySuperTuple[1][0] yields the first item of the second tuple.

3.  Lists in Python
For the most part, anything you can do with a tuple, you can also do with a list. Most 
of the syntax is the same, even. Lists are created similarly, sliced the same way, 
accessed the same way, and nested the same way. The major difference is that lists 
are mutable, which means we can add items to them or remove items from them. So, 
let’s start by quickly demonstrating the extent to which lists are the same as tuples, 
then find out what makes them different.

Figure 4.3.11

Figure 4.3.12

Figure 4.3.13

How would you then access individual values of this nested tuple? The first 
index you provide would determine which of the three tuples you grab, and the 
second index you provide would determine which element from that tuple you get. 
So, to get the first item of the second tuple, you ask for mySuperTuple[1][0]), 
as shown in Figure 4.3.12.
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Figure 4.3.14

Figure 4.3.15

So, everything you learned about tuples still applies to lists. The declarations are 
the same (just with brackets instead of parentheses), accessing elements is the same, 
slicing is the same, unpacking is the same, nesting is the same. What’s different, then?

List Functions
What differentiates lists is that they’re mutable. That means there are a lot of inter-
esting things we can do with lists that we haven’t been able to do with strings or 
tuples. Let’s run through a few of them:

•	 append(item). Adds item to the end of the list, lengthening the list by one.
•	 insert(index, item). Inserts item at the given index. For example, 
insert(1, newItem) would make newItem the second item on the list 
(because lists are zero-indexed).

•	 sort(). Sorts the items in the list in place. This will change the values associ-
ated with each index in the list.

Lists as Tuples
Nearly everything we did with tuples, we can also do with lists. Figure 4.3.13 runs 
through all the different creation, unpacing, and slicing methods we covered with 
tuples, showing they work with lists as well.

Notice that the output of each block throughout this process matches the output 
of the corresponding block from the tuple examples in the previous lesson. The only 
difference is that lists are defined with brackets (as shown on line 7 of Figure 4.3.13) 
instead of parentheses.

The handy way of unpacking tuples into individual variables even works with 
lists, as shown in Figure 4.3.14. And nested lists work the same way as nested tuples, 
as shown in Figure 4.3.15. You could even mix lists and tuples to have a list of tuples 
or a tuple of lists, or a list with both lists and tuples or a tuple with both tuples and 
lists. Python is very flexible.
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•	 reverse(). Reverses the current order of the list. This will also change the 
values associated with each index in the list.

•	 copy(). Returns a copy of the list.
•	 index(item). Returns the index of the first element in the list whose value 

matches item.
•	 count(item). Returns the count of elements in the list whose values match 
item.

•	 remove(item). Removes the first element in the list whose value matches item. 
•	 pop(). Removes and returns the last item on the list.
•	 clear(). Removes all items from the list.
•	 extend(incomingList). Appends all the items in incomingList to the 

current list. Note that this adds the items in incomingList one-by-one to the 
current list; it doesn’t add incomingList itself as an item to the current list. 
incomingList could be a list or a tuple.

In addition, there are a couple of other ways we can examine and modify lists. The 
in operator can still be used to check to see if a particular value is present in a list; it 
will return True if the value is present, False if the value isn’t. We can also use the 
reserved word del to delete items from the list by their index. We can combine del 
with our syntax for slicing lists to delete any slice that we want to remove.

That’s a lot of methods we just ran through, so Figure 4.3.16 runs through them 
all one-by-one. Remember, because lists are mutable, if a method modifies the list, 
that modification will carry forward. That differs from our string methods because 
strings were immutable.

To try to make this easier to follow, we’re going to do something a little uncon-
ventional: we’re going to put the string labels on the right so that you can line up the 
lists and see the differences one on top of the other. So, walk through it one by one. 
Read the operation on the top to see what was done, then compare the lists to see 
what happened. Then, revisit the method name to see why this happened. If you’re 
confused, try running them yourself!

Figure 4.3.16
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4.  Lists, Loops, and Functions
A significant portion of the value of lists (and sometimes tuples as well) comes when 
we integrate them with loops. Additionally, lists are our first example of mutable 
data structures, so it’s useful to remind ourselves what happens when we pass a 
mutable data structure into a function. So, let’s briefly look over three things: iterat-
ing over a list with a for loop, iterating over multi-dimensional lists, and using lists 
with functions.

Iterating Over a List
Remember, to iterate over a sequence means to execute some block of code for each 
item in the sequence. So, iterating over a list means executing a segment of code for 
each individual item in a list. The same can be done for a tuple as long as we’re not 
trying to modify it.

Recall that earlier when we talked about loops, we had a program where the user 
would enter a bunch of grades, and it would average those grades. Let’s revise that 
program to instead average the numbers in a list. In fact, let’s make it a function, so 
that it could be used in other ways by a hypothetical program.

Figure 4.3.17

In Figure 4.3.17, we define the function average() on lines 2 through 6, 
which takes as input a list. It initializes sum to 0, and then for each number in the 
list, it adds number to sum. It then returns sum divided by the number of items in 
the list. In the main program starting on line 8, we create two lists: myList1 and 
myList2. We then print their averages on lines 11 and 12.

We can do this kind of iteration for any kind of list. Each time the loop iterates, 
number (or whatever variable fills in the blank in for ___ in list) takes on the 
value of the next item in the list. The first time the loop runs on myList1, number 
has the value 1, and 1 is added to sum. The second time, it has the value 2, and 2 is 
added to sum; it repeats this for each item in the list.

Generally, when dealing with lists, we use for loops. We can technically use 
while loops, but for loops just tend to be a little bit easier: we don’t have to worry 
about manually checking the length of the list or incrementing a loop control vari-
able, and if we’re using a for-each loop, we need no loop control variable anyway. 
The constraint on for loops was that we needed to know the number of iterations 
in advance, but we do know that with a list, as long as we don’t make the mistake of 
modifying its length while the loop is running.
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Iterating Over a 2-Dimensional List
Let’s take that a step further. We’ve mentioned that we can have multi-dimensional 
lists, or lists of lists. How do we iterate over those? Let’s imagine that instead of 
just averaging one set of numbers, we were interested in averaging several sets, each 
within themselves. Let’s call this a gradebook. In the gradebook, we have a list of 
lists of grades: each list of grades corresponds to one student, so we want to average 
each individual student’s grades. The result of this should be a separate list where 
each item in the list is the average of the corresponding item from the list of lists of 
grades. In other words, item #1 in the result should be the average of the numbers 
in list #1.

Multi-Dimensional Lists
A list-like structure where the 
items in a list are themselves lists, 
such that the practical effect is a 
multi-dimensional list.

Figure 4.3.18

Let’s start with the main program this time so we can have some real numbers 
when we discuss the function. In Figure 4.3.18, we define my2DList on lines 15 
through 19 as a two-dimensional list: a list of lists. We start the outer list with a 
bracket, and then immediately start the first inner list with another bracket. Python 
lets us split the list definition into multiple lines to keep things organized, so we can 
see the two-dimensional structure here: each line is a list, and my2DList is a list 
where each of these lists is one of the items.

Then, we print the result of TwoDAverage(my2DList). So, the code jumps 
up to TwoDAverage() on line 4. It initially defines an empty list on line 4 that will 
hold the results; each time we get a new result, we’ll add it to this list. Then, we start 
what we call the outer loop on line 6: the outer loop is the loop that wraps around the 
other (inner) loop. Each run of our outer loop will grab the next list from my2DList 
and assign it to numList. So, on the first iteration, the value of numList is [91, 95, 
89, 92, 85], which is the first list in my2DList.

Now, we run the inner loop over numList. This portion is identical to our previ-
ous average() function: create sum and set it equal to 0 on line 7, iterate over each 
number adding it to sum on lines 9 and 10, then divide sum by the length of the list 
to get the average on line 12. Instead of returning it, though, we add it to result: 
result contains all the averages we want to return, so we want to wait until the 
end to return it. So, the outer loop runs for each of the five lists, and the inner loop 
runs within each of the five lists. In the end, result contains five numbers, each 
the average of one of the lists in my2DList.

This kind of nested loop structure is how we iterate over a two-dimensional list. 
We could take this further: we could have a list of lists of lists, where we would need 
three nested loops to iterate over everything.

216	 Chapter  4.3  Lists

17_joy8227X_ch04.3_p207–224.indd   216 01/12/16   8:19 am



Lists and Functions
Lists are mutable. That means that if we pass a list to a function or method, the func-
tion or method can change the values of the list, and those changes will persist out 
to the main program. Sometimes, this can be problematic. Imagine, for example, if 
the function from Figure 4.3.18 “popped” the grades in each list rather than iterating 
over them, as shown in Figure 4.3.19.

Figure 4.3.19

Figure 4.3.20

The pop() method removes and returns the last item in a list. It’s good when 
you want to empty and process everything in a list. If it was used here, though, it’s 
actually changing the list itself. That’s why we have to manually count the number 
of items on line 9 and 15: when we reach line 17 to calculate the sum, the length of 
the list is now empty.

So, when dealing with lists and any other mutable data type, we have to be 
careful that we understand that all modifications we make to the list will persist. 
Most of the time, though, this will be useful: we can call functions to modify lists 
in place. We’ve actually seen an example of this. Compare the string methods to the 
list methods in Figure 4.3.20.
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String’s upper() method on line 8 makes the string uppercase. List’s sort() 
method on line 10 sorts a list. Yet, after we call myString.upper() and myList.
sort(), only myList has changed, as shown by the print() statements on lines 
12 and 13. Lists such as myList are mutable, meaning that a method can actually 
change its values (or in this case, the order of its values). Strings such as myString 
are immutable, meaning that a method cannot change its value. To get the upper-
case version of myString, we have to assign myString.upper() to a variable; 
it returns what happens if we converted the string. To get the sorted version of 
myList, we just have to call myList.sort(); it sorts it in place. To go back to our 
example of Addison, myString.upper() is like asking someone to read to you 
the results of the capitalizing the string; myList.sort() is like handing someone 
the list and asking them to hand you back a sorted list.

Lists vs. Tuples
Based on our description, lists can do everything tuples can do and more. They can be 
declared, sliced, nested, and unpacked the same ways, with the added bonus of being 
mutable. That means we can add new items, remove items, sort items, and more.

So, you might wonder: Why would you ever use tuples? That’s actually an 
interesting question, and if you ask a bunch of people, you’ll get a bunch of different 
answers. Generally, though, there are a couple of conventions we follow to decide 
whether to use lists or tuples.

First, we often use tuples when we’re definitely dealing with a predetermined 
number of items. We use lists when the ability to add or remove from the list would 
actually be useful and relevant. Consider our quotientAndRemainder() func-
tion from Figure 4.3.14, though. Would there ever be a need to add additional values 
to the return from that function? Not really; they represent two qualitatively differ-
ent things, a quotient and a remainder. So, we use a tuple in that case.

That connects nicely to the second convention. When we think of a list of 
things, we typically think of the list as somewhat homogenous. That is, we think of 
the things on the list as being qualitatively similar. Take our examples of real-world 
lists. A grocery list is a list of items. A to-do list is a list of tasks. We would gener-
ally consider it strange to put “Call Becky” on a grocery list or “oranges” on a to-do 
list because we think of lists as having a homogenous collection of things. So, if 
we’re grouping together different kinds of information (even if they’re the same data 
types), we often use tuples.

That convention can be made even stronger. One common convention is that 
lists are used for like data types. Python technically lets you create a list that has 
integers, floats, strings, and other data types in the same list, but by convention we 
rarely do that. This is largely because lists are so often iterated upon with for loops: 
when we iterate over a list, we execute a block of code on each item in the list. For 
a single block of code more complex than just a print statement to work on every 
item, the items generally need to be of the same type. Tuples are more often used 
to represent information that is unpacked into unique variables, like quotients and 
remainders, so it’s more natural for them to have a different data types.

These are all just conventions, though. That means that while other program-
mers with whom you share your code will often expect these conventions to be fol-
lowed, Python isn’t going to stop you from doing things one way or the other. It’s 
good to get in the habit of following these conventions, though.

5.  Advanced List-Like Structures
Before we move on, let’s quickly cover three special kinds of list-like structures. 
These structures are like lists in that they contain multiple items in a certain order. 
However, they provide unique constraints on how the items in the list are actually 
accessed. In some ways, these are additional data types; many languages have 

Common Conventions for Lists 
and Tuples:
•	 Use tuples when the number 

of items is known in 
advance.

•	 Use lists when the number 
of items may change.

•	 Use tuples for heterogenous 
collections.

•	 Use lists for homogenous 
collections.
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dedicated types for these list-like structures. In other ways, these are simply ways 
of interacting with lists, and are constraints we could apply on ourselves depending 
on the type of program we’re writing.

Stacks
A Stack is a list-like structure that limits the ways in which you can add or remove 
information from the list. Rather than being able to insert or grab information from 
anywhere in the list, you can only add new information on top, and you can only 
access the information that is currently on the top. To add new data, we “push” it 
onto the top of the stack; to remove data, we “pop” it off the top of the stack. This is 
sometimes referred to as Last-In-First-Out, or LIFO. The last item added to the list 
is the first item removed from the list.

Stack
A list-like structure that follows 
the “Last-In-First-Out” paradigm, 
where we can only access the most 
recently-added item on the list and 
can only access it by removing it 
from the list.

Figure 4.3.21

This makes a lot of sense when we’re dealing with physical objects: typically 
putting a new item on top blocks access to the ones below, so that should be the one 
we grab first when we need one. What about when there is no physical need to do 
so, though?

Imagine you were programming a robot to search for your keys in your house 
or apartment. You would want it to search each room, and within each room search 
each piece of furniture, and within each piece of furniture search each drawer. So, 
what would you do? You’d initially give it three commands: search-Kitchen, 
search-Bedroom, and search-Bathroom. search-Kitchen, though, would 
be unpacked to find search-Counters, search-Drawers, and search-
Cabinets. You would want the robot to do all three of these things before moving 
on to search the bedroom. So, you’d push those three commands on top of the stack 
of orders, then pop them off one by one. That way, you would ensure the robot 
would not move on to the bedroom until it had finished checking the kitchen.

This is actually analogous to an advanced computing topic called depth-first 
search that comes from the advanced data structure trees. These are both outside the 
scope of this material, but you’ll get to them in a future computing class.

Queues
Queues work in exactly the opposite way of stacks: rather than Last-In-First-Out, 
queues are First-In-First-Out, or FIFO. Queues work the way most lines you experi-
ence in the real-world work: you are served in the order in which you got in line. 

Stacks are LIFO:
Last-In-First-Out

Queue
A list-like structure that follows 
the “First-In-First-Out” paradigm, 
where we can only access the least 
recently-added item on the list and 
can only access it by removing it 
from the list.

Figure 4.3.22
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Your call is answered in the order it was received. With queues, we’re restricted to 
removing items from the front of the list and adding items to the end of the list. We 
refer to this as “enqueuing” (adding an item to the end of the list) and “dequeuing” 
(removing an item from the start of the list).

Figure 4.3.23

When designing programs, we might use queues to process tasks in the order 
they were launched. Interestingly, however, stacks end up being used more often 
in programming, for both theoretical and practical reasons. Theoretically, stacks 
lend themselves to the way in which programs are executed, as demonstrated by the 
analogy to a depth-first search above—you don’t need to understand the analogy 
right now, but rather just know that there exist concepts in computing that lend them-
selves nicely to stacks. For practical reasons, stacks tend to be a little more efficient 
as well: when using a queue, every time we dequeue an item, we have to update the 
indices of every other item in the list to decrease them by one. When using advanced 
computers that isn’t a big issue, but when you use computers of earlier generations, 
which are comparatively slower, that could present a major difficulty.

Note that when we iterate over a list using a simple for loop, we’re processing 
things in the same order we would process them with a queue. That doesn’t make 
that a queue, though: queues and stacks are characterized by the requirement to 
remove an item from the list in order to really access it.

Linked List
Linked lists are a special kind of implementation of a list-like structure. In order to 
understand linked lists, though, we have to briefly talk about how lists are usually 
stored.

In lower-level languages (i.e., languages that are closer to the real functions of 
a computer), memory is typically allocated in contiguous blocks. That’s why lists in 
these languages have to be declared with their lengths in advance: If you need a list 
with 40 memory spots, the computer has to find an area of memory with 40 consecu-
tive spots open. If you then need a 41st, there’s no guarantee the 41st spot is open.

Higher-level languages abstract over this process. While they’re written to 
mimic interacting with a contiguous block of memory, in reality there might be 
pointers to different areas of memory. A list with five items might store those five 
items in various different places in memory, and when you request the second item, 
it goes and looks up the next item’s memory location. With older computers, though, 
even those look-ups could take some notable time, especially if you were doing a 
lot of them. Inserting was a particularly high-intensity operation: if you wanted to 
insert an item in the middle of a list, the computer had to go through and change its 
locations for every item after it in the list.

Queues are FIFO:
First-In-First-Out

Linked List:
A list-like structure where the 
location of each item in the list is 
contained in the previous item in 
the list.
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A linked list operates differently. Instead of one list of memory pointers, each 
item in the list would contain both its value and a pointer to the next item in the 
list. So, if you wanted to get item #6, you would find its location from item #5. 
This makes certain operations significantly more efficient. Iterating, for example, 
wouldn’t require the computer to return to its list of memory locations each time it 
wanted to move to the next item: the next item’s location was stored with the current 
item. Inserting was a breeze as well: instead of having to update every item’s index, 
only the previous item had to be updated. If we wanted to insert a new item #6, we 
would just have to change item #5 to point to the new item #6; the new item #6 
would then point to the old item #6, which is now #7.

Of course, other operations are significantly less efficient. In a linked list, the 
computer has to iterate through every previous item to find an item with a given 
index; there’s no way to jump straight to item #7 like there is with a regular list. But 
if we’re iterating and inserting far more than we’re jumping into the center of the 
list, then a linked list could grant some significant efficiency gains. Many of these 
issues have gone away as computers have gotten faster, but the underlying concepts 
are still part of the core of computing theory.

Figure 4.3.24

Figure 4.3.25
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6.  Lists and Turtles
We have a new tool in our toolbox now: lists. How can we use lists to improve or 
expand our user interface for controlling turtles? Let’s do two things: first, let’s 
simplify the process by which we’re listing commands that the user has available. 
Second, let’s create a new function: a record function that would allow the user to 
enter multiple commands, and a number of times to repeat them.

It’s worth noting that here, the complexity of our turtles applications is going to 
rise tremendously. Don’t worry at all if you get lost; we’re covering very advanced 
structures, syntax, and ideas. Try to step through the code one line at a time, follow-
ing how the programs execute. Try to predict what will happen if you enter certain 
commands, and then follow through and see if you were right. Most importantly, 
don’t get discouraged. It’s taken me a long time to develop this example, and part 
of its purpose is to show the complexity possible with the concepts we’ve learned. 
If you understand the rest of the course besides these turtle examples, you’re still 
doing very well.

Listing Commands
When we covered strings, we covered a join() method that could use the string to 
join together multiple items in a list into a longer string. Right now, we’re having to 
update the line that lists the commands for users manually each time we add a new 
command. This can be slightly easier if we maintain a list of all the valid commands 
at the top of the program, and simply join together the valid commands when they’re 
needed. This way, if we need to list the commands in multiple places, we don’t need 
to worry about adding to the list in multiple places.

We’ve only made two changes in ListingCommands.py. First, we’ve created a 
tuple early in the program: VALID_COMMANDS, on line 3. This is written in all caps 
to specify it as a constant, a variable whose value won’t be changed. Granted, a 
tuple’s value can’t be changed anyway, but we’re also not going to set VALID_COM­
MANDS equal to a different tuple either. The goal of writing it in all caps is to com-
municate that this variable will retain the value it was assigned at the beginning 
throughout the program.

Then, later, we’ve replaced the line that lists the available commands with line 
39, which calls “, “.join(VALID_COMMANDS). This takes the individual strings in 
VALID_COMMANDS and combines them into one string, with “, “ separating each 
pair. This way, when we add a new command, we need only remember to add it to 
the tuple at the beginning, not to any line that lists commands. So, let’s go ahead and 
change the “Invalid!” message to use VALID_COMMANDS, too, on line 96.

Preparing for the Record Function
Our next goal is to create a command that will allow the user to enter multiple com-
mands, as well as a number of times to repeat these commands, to then be executed 
repeatedly. In other words, instead of just entering one command at a time, we want 
the user to enter a list of commands, followed by a number of times to repeat these 
commands.

That’s going to mean, however, our user needs to be able to enter commands in two 
ways: one, the normal way we have now, to execute them directly, and two, a new way, 
to enter them into a “recording”. This is going to mean a pretty significant restructuring 
of our program. We now need to differentiate commands that are to be run immediately 
from commands that are to be added to a list. We also need to differentiate commands 
that are run based on direct user input from commands that are run based on executing 
a list. In other words, we need to split up our command input and our command execu-
tion. To do that, we need to create a data structure that will hold commands and their 
parameters. We’ll use tuples for that in PreparingfortheRecordFunction.py; remember, 
tuples are good for heterogenous lists.
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We haven’t yet added our record function yet, right now we’re just laying the 
groundwork. To be able to record commands to be repeated later, we need to get 
commands from the user without executing them right away. We also need to execute 
commands that weren’t just entered by the user. So, we’ve split up the process: We 
have separate functions for getting commands from users and to execute commands.

Previously, however, the arguments we received from users were stored in local 
variables, like angle and distance. Now, however, we need to store commands and 
their arguments separately. This means combining qualitatively different kinds of 
information into one variable whose value should not change once entered. In other 
words, perfect time for a tuple!

So, we’ve revised our code: we now have a getCommandFromUser() function 
starting on line 16. It runs the same conditionals we ran previously, but instead of 
immediately executing the command the user enters, it instead stores it in a tuple 
with the command name itself as the first item. That tuple is returned at the end of 
the function, so we’ll be able to correctly direct it to be executed or recorded. Right 
now, we’re only executing, so immediately after getting a command from the user, 
we run the execute function. It runs the same conditional based on what command 
was in the first spot of the tuple, but instead of getting any user input, it just executes 
the command directly.

Note one special feature here: for our commands without arguments (penup, 
pendown, end), we have a comma after the command name in the tuple declaration. 
That’s how Python knows to treat these as tuples: otherwise it just treats them as 
strings. Notice also how this has radically shortened the actual control loop of the 
function, down on lines 86 through 89. It could be shortened even more by having 
the while loop operate on commandTuple[0] directly, but we’re about to need the 
command in the main function anyway.

So, we’ve now separated the act of getting the command from the user and exe-
cuting the command we received. Now we’re ready to start differentiating whether 
the command should be executed immediately or recorded for repetition.

The Record Function
Now let’s make things complicated. All our new reasoning here is going to be inside 
our while loop. Why? The list of recorded moves (the list recordList) and the 
memory of whether we’re recording (the boolean recording) need to persist 
across multiple executions of the while loop. There are other ways we could handle 
this, of course, but for now let’s do it the way shown in TheRecordFunction.py.

Every step of the while loop’s execution, it now does a couple extra things; 
all of the following reasoning takes place in the while loop at the bottom of the 
program. It first checks if it’s currently recording. If it’s not, it executes the next 
command. If that command is to start recording, then it clears the list of recorded 
commands (in case this isn’t the first time we’ve recorded something), and sets the 
boolean recording to True. So, if we’re not recording and we didn’t just start record-
ing, executeCommand() runs like normal.

If we are recording, then the loop first checks to see if the command was to 
stop. If so, it stops recording, then runs two loops. The outer loop repeats the request 
number of repetitions. The inner loop runs each command one-by-one. So, if the 
user asked to run the sequence five times, the outer loop would run five times, and 
each time it ran, all the commands would run one-by-one.

If we’re recording and the command isn’t stop, then it just adds the command 
to the list and continues as normal. Once we’re done recording, the program returns 
to its default state: any new commands are executed immediately unless we record 
again.
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Our program has now gotten very complex. This little explanation shouldn’t 
be enough to understand it. Instead, you should try it out. Try different sequences 
of commands to see what happens. Modify the code and see what breaks, and how. 
This is a very complex program, one that took someone with almost two decades of 
programming experience considerable time to write and debug; it’s okay to find it 
intimidating. Step through it line-by-line, see why it operates the way it does, and 
try it out with different input.

How else could we have implemented this? If we wanted to avoid having to 
check for the recording and stop commands in the while loop, we could have repeat-
edly passed the list recordList and the boolean recording back and forth between 
the main code and the functions themselves. I prefer not to do that, however, since 
that requires dealing with them every step of the way rather than only dealing with 
them when recording is turned on and off. We could also force the functions to see 
global copies of the variables, but that’s outside of the scope (no pun intended) of 
what we’ve covered so far.

As of now, for anyone, the recording function requires some pretty complex 
reasoning within our while loop. In the future, we may find a way to streamline this.
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Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to: 

•	 Recall the fundamentals of file 
input and output, including the 
concepts of reading, writing, and 
appending files;

•	 Create programs that write to and 
read from files;

•	 Write programs to save 
commands to a file and load them 
from the file for execution.

4.4File Input and Output

c h a p t e r 

1.  What Is File Input and Output? 
So far, the major weakness of everything we’ve written is that every time we run our 
code, it’s like we’re running it for the very first time. Nothing persists, or is saved, 
across different runs of our code. If we want to change some data, we have to change 
it in the code itself. Needless to say, this isn’t how real programs operate. Nearly 
every program we use on a daily basis persists some information across multiple 
runs of the same program, whether it’s login information, the user preferences, or 
the files that we create. This is taken care of by the complementary processes of file 
input and file output.

Output Complements Input 
We usually refer to “file input and output,” but let’s start with output because it’s 
what we’ll need to do first in the programs we’ve been writing. File output is the 
process of taking what’s currently stored in memory and writing it to a persistent 
file on the hard drive. We might not want to write everything in memory to a file, but 
anything we would want the next time we run the program would need to be written. 
This is file output: outputting the current data in the program to a file.

The complementary process to this is file input. File input is reading that data 
from the file into our program’s active memory. Ideally, these processes are reverses 
of one another: whatever data was outputted to the file should end up loaded into the 
program in the same way when inputting from the file. Imagine a program that had 
three variables, a, b, and c, with the values 5, 3, and 1, respectively. When output-
ting to the file, the program would write 5, 3, and 1. When inputting the file, the goal 
would be for 5 to be loaded as the value of a, 3 the value of b, and 1 the value of c. 
Ideally, it would not be clear after loading that any outputting and inputting occurred 
at all: loading should restore the state of the program to just as it was when it saved 
(for most programs, anyway).

Some of the data we’re referring to is obvious. It might be the preferences the 
user has set, or the document that they’ve created; when they load it again, it should 
load the document exactly as it was saved. Other data can be a little subtler, though. 
Recent versions of Microsoft Word, for example, save not only the document, but 
also the scroll position, so reopening the document actually shows you the same area 
of the document as you saw when you saved.

File Types
As you’ve noticed using computers in your everyday life, most files have types. 
There are .pdf files, .docx files, .jpg files, .png files, and thousands of other 
types. Each type of file specifies rules about how the program should read the data 
within it.

You may have noticed that you can open any type of file with a plain text 
reader, like Notepad on Windows, TextEdit on Mac, Emacs or Vim on Linux, or 
many more. While technically you can open these files, you usually won’t be able 
to read much in them: they’re not stored in just plain text, but rather there’s a lot of 

File Input and Output
The complementary processes 
of saving data to a file and 
loading data from a file, 
generally such that the state 
of the memory of the program 
is the same after saving and 
loading have occurred.
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built-in, type-specific encoding. That encoding is properly unpacked by a program 
that knows how to read the file.

Think of encoding as the organizational scheme for a friend or co-worker. If 
you walk into a co-worker’s office, you might see file folders labeled with different 
colors and numbers. You don’t know what those colors and numbers mean, so you 
can’t fully understand the information stored there the way they can. That’s what a 
file type is: a set of rules for how to interpret a file. A program can only correctly 
interpret the file if it knows these rules. You could learn the rules, and similarly, 
we could develop new programs to read existing file types, but only if the rules are 
made available.

There do exist plaintext file formats, like .txt, .csv, .html, .xml, and more. These 
are like walking into your co-worker’s office and seeing an organizational scheme 
so simple or so well-documented, anyone could understand it. When you open these, 
what you see is what you get: you can read them just as the text itself. We’ll stick 
close to these plaintext types for our conversations.

2.  Reading, Writing, and Appending 
With plaintext files, there are three general concepts we need to understand: reading 
from the files, writing to the files, and appending to the files. Regardless, though, it 
all starts with opening files and ends with closing files.

Getting Started: Opening and Closing Files
File input can vary pretty dramatically from language to language. Generally, 
however, it follows a certain high-level workflow. First, the file is opened and 
assigned to a variable that represents the opened file. This is not always an easy 
step: if we try to open a file that doesn’t exist, our program will usually throw an 
error, and as a result, crash if the error was not handled. For that reason, many lan-
guages require that file input and output be enclosed within a try block. In many 
languages, when opening a file, we need to specify a mode: read-only, write, or 
append, which we’ll cover in the next section.

Opening the file, in most languages and operating systems, locks the file down 
in the operating system. Other programs are not permitted to modify the file while 
our program has it opened. For that reason, we need to also close the file when we’re 
done. Closing the file indicates to the operating system that we’re done modifying 
it, and it can be modified by other programs again. 

Reading, Writing, Appending
Once we’ve opened a file, there are three general modes we’ll usually use for inter-
acting with it: reading, writing, and appending. Reading simply means that we’re 
looking at the file’s contents and reading it into our program. We’re not changing the 
file’s contents at all, just reading it.

Writing, on the other hand, means we’re writing to the file from scratch. Have 
you ever accidentally saved over a file on your computer with a different file? The 
reason that’s so disastrous is that when “writing” to a file, we by default erase it 
and write it completely from scratch. With writing, we assume the file is a snapshot 
of the current state of our program, not a running log of the history of its changes. 
Usually that’s the case, but it does mean we need to be careful. We should never use 
sensitive data when testing out our input and output because we could easily find 
ourselves overwriting it.

The third mode, appending, is safer, although often not as useful. Appending 
also writes to the file, but it starts on the last line of the file. Nothing is overwritten; 
new data is just added to the end.

Beyond writing or appending, there are some pretty advanced ways of 
writing content to files. For example, serialization is an often automatic process 
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of grabbing all the variables in a program and automatically storing them in 
a way that can be loaded directly in the future. That’s further down the road, 
though. For our purposes, we’re going to discuss file input and output primar-
ily in terms of reading  and writing lines one-by-one. This is a good place to 
get started because it keeps things pretty close to the individual variables we’re 
storing.

3.  Writing Files in Python 
Let’s start by writing files. The main reason to start here is that to have something to 
load, we must have something saved! We’ll go through two examples: a simple one, 
where we just output a handful of variables, and a complex one, where we output a 
list using a loop.

Simple File Writing
To write to a file in Python, we open the file, write our data, then close the file. 
Python makes this relatively easy, as shown in Figure 4.4.1.

Figure 4.4.1

We open the file using Python’s general function open() on line 6. We give 
it a filename and, optionally, a mode: “w” for write, “r” for read, and “a” for 
append. We then assign the open file to a variable. This variable now contains 
our  open file. However, the variable itself isn’t really data: what the variable 
does  is it allows us to run methods that will take care of reading and writing 
the file.

Right now we want to write, so we call outputFile.write() on lines 9 
through 13. outputFile.write() can only write strings, so we have to convert 
our variables to strings before writing them, so our argument to outputFile.
write() on line 9 is str(myInt1). Then, after writing all the variables, we 
close() the file on line 15. After running this, we could go to the folder where 
this code lives, and we would find OutputFile.txt. Opening it, we would find that it 
contains the text shown on the right side of Figure 4.4.1: 122334.

We probably want each number to appear on its own line, though. Otherwise, 
we would receive the same file from printing number sets like 12, 23, 34; 123, 3, 
34; 12, 334, 2; and so on. Remember our escape sequence \n? If we add that to 
the end of each line, we’ll accomplish our goal, as shown in Figure 4.4.2. Here, 
if we open the file, we’ll see the numbers 12, 23, and 34 each on a separate line. 
That would make it easier to load in our loading stage.

open()
A function that takes as input a 
filename and, optionally, a write 
mode (“r” for read, “w” for write, 
“a” for append), and opens the file 
for access.

write(text)
A method of a variable with type 
file, writes the text to the file.

close()
A method of a variable with type 
file, closes the file from further 
reading or writing.
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Writing Lists
That form of simple writing works just fine if we know exactly how many values we 
want to store and exactly the order in which to store them. As we’ll see later, when 
loading from that file, we’ll assume the first line holds myInt1, the second holds 
myInt2, and the third holds myInt3.

Most of the interesting applications we’ll write, though, don’t have a predict-
able number of variables. What if we want to write a list of items to a file? Let’s 
pretend we’re writing a list of names, for example. How would we do that? The most 
obvious way would be to iterate over the list, writing them to the file one by one, 
as shown in Figure 4.4.3. The for loop on line 8 repeats for each name in myList, 
calling outputFile.write(name + “\n”) on each one to print the name and 
a line break.

Figure 4.4.2

Figure 4.4.3

This could be even easier, though. The reason we cover lists before file output 
(or at least, one of the reasons) is because Python has a handy way for writing lists 
to a file, as shown on line 8 of Figure 4.4.4.

The writelines() method writes every item in the list to a file. Unfortu-
nately, we’re back to our old problem: writelines() doesn’t append line breaks, 
so all the names are squished together! So what do we do? Well, we could put the 
newlines directly into the names, but that seems a little inelegant: what if we need 
to use these names for something else? Instead, we could merge the list into one 
string with the newlines built in, and then write that to a file, as shown in line 8 of 
Figure 4.4.5.
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This code embeds the newline escape sequence, “\n”, between every pair 
of names in myList; if you’re unsure how this works, peek back at the join() 
method from Chapter 4.2. When it prints this one large string, the newlines are built 
in, as shown by the contents of OutputFile.txt in Figure 4.4.5.

Note that we can alternate between writing variables directly and writing via 
loops, as well as print via multiple loops or nested loops. Writing is just like print-
ing: whenever the computer encounters a write() call, it writes to the file in that 
order.

Figure 4.4.6 shows an example of printing variables directly followed by 
printing a list. This code will write 12, 23, and 34 to the first three lines of the 
output file, then the strings David through Jasmine on the next eight lines.

Figure 4.4.4

Figure 4.4.5

Figure 4.4.6
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Another Way to Output
Python also gives another way to output files that might be a little more intuitive. 
The print() function that we’ve been using for a long time has a keyword param-
eter file that, when defined, writes to the specified file instead of the console, as 
shown in Figure 4.4.7.

Figure 4.4.7

Figure 4.4.8

We still open the file the same way on line 5, but instead of writing using 
outputFile.write(), we write using print() on line 10, and specify with the 
file parameter that the target of our print statement is outputFile. The added 
bonus here is that print(), by default, appends the newline character. It also lets 
us use our other keyword parameters like end and sep, so we could change the 
newline character to something else, or write multiple variables separated by a space 
at the same time.

Personally, I usually see people using the first approach (the write() method), 
but I prefer using the second approach (including the file parameter with the 
print() function). Either will work, though.

Appending to Files
In all of the above examples, we used the “w” argument to indicate we were writing 
to the file. “w” tells the computer to open the file and rewrite it from the beginning; 
the original file contents are overwritten. If we instead use the “a” argument, the 
computer opens the file in “append” mode. It’s ready to write, but starting at the end 
of the file instead of the beginning, keeping the original contents.

What happens if we run the previous code blocks with append mode instead of 
write mode? Let’s assume we’re starting with OutputFile.txt empty, and that we run 
our code from Figure 4.4.2 twice. If we were in write mode, the second run would 
merely overwrite the first. What about in append mode?
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Figure 4.4.9

Figure 4.4.10

4.  Reading Files in Python 
We’ve now written some data to a file. Our goal is now to complete the symmetry 
between output and input: we want to load these files back into our program such 
that the values of the variables are the same after loading as they were before.

Simple File Reading
In our first example in Figure 4.4.2, we wrote three integers to a file, each on their 
own line. Now, let’s write a program to load these back into myInt1, myInt2, and 
myInt3. First, though, let’s just see how Python opens the file and what it sees when 
it does in Figure 4.4.10.

Figure 4.4.8 shows the results of running this code twice in append mode. 
If we run this code twice, then each of the three lines is printed twice. If we 
run it three more times, then each of the three lines will be printed three more 
times.

Does this work for the alternate method of writing we covered? Let’s again 
assume that OutputFile.txt is empty when we get started, and that we run the code 
twice, as shown in Figure 4.4.9. This works, too! So, if we want to add to the end of 
an existing file instead of writing it from scratch, we can open it in append mode. In 
practice, I haven’t found that many users for this: it’s most useful for logging across 
multiple runs of a program.
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To read files, we use the readline() method in the outputFile variable, 
as shown on lines 4, 6, and 8. readline() reads to the next line break, then 
returns the string that results. This moves the reader forward to the start of the 
next line, so when we call readline(), the next line is passed permanently; if 
we don’t save the results in a variable, we can’t go back and read it again without 
completely reopening the file from scratch. Reading the file reads through it once 
straight through; it doesn’t jump around or repeat. Note also that the line breaks 
are included in what is read from the file, as indicated by the extra blank line 
between numbers in the output. If we want to store or print the lines without the 
line breaks (as we often might), we need to strip the whitespace off of them, as 
shown in lines 4, 6, and 8 of Figure 4.4.12.

readline()
A method of a variable of type 
file, reads and returns the next line 
of the file as a string.

Figure 4.4.11

Figure 4.4.12

This is deceptively complicated actually. We’re calling a method on another 
method. We have inputFile, a variable that represents the file we’re reading. 
We call inputFile.readline() to get the next line of inputFile. We then 
want to strip the whitespace (spaces and newlines) off of the string; but if read-
line() returns a string, then we can call strip() directly on top of readline(). 
The result is that we print the lines one-by-one with the extra newline characters 
removed.

If that’s still confusing, let’s step through it bit by bit. We tell the computer 
to print inputFile.readline().strip(). When we chain calls together like 
this, they’re run left-to-right—after all, it doesn’t know what it’s calling strip() 
on until it calls readline(). So, it grabs inputFile() and calls readline(). 
The first time this happens, readline() returns “12\n”. This effectively replaces 
inputFile.readline() with “12\n”. So, this line effectively becomes "\n".
strip(). “12\n” is a string, so it has access to the strip() method. strip() 
removes spaces and newlines, so it removes “\n”, leaving only “12”.

Here’s how we open a file to read: we use the same function, open(), and 
supply the “r” argument to indicate we want to read it. What happens if we just print 
the file directly? Python prints a reference to what type of file is and what mode it’s 
in, not the contents. To print the contents, we have to actually read the file, as shown 
in 4.4.11.

232	 Chapter  4.4  File Input and Output

18_joy8227X_ch04.4_p225–238.indd   232 01/12/16   7:54 am



So, if we want to store these lines in our variables as we load them, we have to 
assign the result of each call to readline() to some variable, as shown in lines 5, 
8, and 11 of Figure 4.4.13.

Each time we call inputFile.readline(), it reads the next number from 
the file. By default, readline() returns strings, so we have to convert them to inte-
gers. The int() function is smart enough to ignore the whitespace in the strings, 
so we can skip the strip() method. Then, we print them out one-by-one on lines 
13 through 15.

However, the most important thing is that at the end of this execution, myInt1, 
myint2, and myInt3 hold the same values that they held before we saved and 
closed the program from Figure 4.4.2: 1, 2, and 3 respectively. We’ve thus com-
pleted the symmetry between output and input. Their values before saving and after 
loading are the same.

Loading into Lists
Writing lists was relatively easy: we just iterated over the list, writing each line to a 
file just the same way we would print it. The reason this was easy was that we knew 
in advance how many items in the list there were. However, that presents a challenge 
for reading from a list. When we’re reading, we don’t know in advance how many 
lines there are to read. How do we get around this?

Well, we could go back and change our output, telling it to first print the length 
of the list. That’s a little inelegant, though. Instead, it would be great if Python had 
a mechanism for reading all the lines in a file until the end. Fortunately, it does have 
a couple ways of doing this, as shown in Figure 4.4.14.

Figure 4.4.13

Figure 4.4.14
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Python’s files can use for-each syntax to read each line in the file. On lines 
7 and 9, we say for each line in the file, append the line to myList (after calling 
strip() to strip out whitespace and newlines). If the only thing stored in our file 
is the list’s data, then this is all we need.

What happens, though, if our file was a mixture of lists and variables? For 
example, in Figure 4.4.6, we printed out myInt1, myInt2, myInt3, and myList 
all in one file. How do we load just the integers into the three myInt variables, and 
the list items into the list?

To do this, we do have to know which lines are going to be which kinds of 
data. In Figure 4.4.15, we know that the first three lines of the file are going to be 
the integers, so we can load these the same way on lines 6 through 8. Fortunately, 
though, the for-each loop by default starts with the next unread line, not at the 
beginning of the file. So, we just have to start the for loop after reading the first 
three integers.

At the end of Figure 4.4.15, the status of all four variables—the three myInt 
variables and myList—is the same as it was when we saved in Figure 4.4.6. Note 
also that we don’t have to read line-by-line: we can also use the read() method 
(rather than the readline() method) to read the entire remaining contents of the 
file into one string, newlines and all.

Figure 4.4.15

Save and Load Functions
Generally, of course, we don’t write programs whose sole purposes are to save and 
load random variables. We write programs to do other things, and we need to save 
and load data as part of what they do. For that reason, we typically write save and 
load as functions or methods to be called when needed. Let’s see what that would 
look like real quick.

Figure 4.4.16 is just one way we could have done created these save() and 
load() functions; there are others. Here, lines 2 through 8 define a save() func-
tion that takes as input a filename and a list, and prints the list to the file. Lines 11 
through 18, in turn, define a load() function that takes as input a filename, and then 
creates and returns a list, inList, populated by the lines of the file. The point is 
that we typically write save and load functions that mirror one another: loading data 
from a file loads it into the same variables from which it was saved, unless there’s 
a special reason not to.
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5.  Files and Turtles 
Now that we’ve covered our save and load functions, let’s make that the next thing 
we implement in our turtles. Let’s create the ability to save all previously executed 
commands to a file, and load these commands from a file. That will let users share 
what they created! For now, we’ll keep this simple: the save command will auto-
matically save all previous commands, and the load command will automatically 
load and execute all previous commands.

We’re going to be making several revisions this time around; instead of 
sharing  each intermediate state, let’s instead just look at the finished product, 
FilesandTurtles.py. We can talk through each individual change as we go.

Preparing to Save and Load
One way to do this would be to automatically save any command issued to a file. 
However, we don’t want to just automatically save every session. We want to specifi-
cally give the user the option to save when they want to. To save something, we need 
to have it stored in memory, and right now, we lose our commands once they’re run. 
So, the first thing we need to do is create a list of all the commands in order, to have 
available when we want to save.

So, to prepare for saving and loading, we need to keep that log of the com-
mands that have been entered. We do that by creating allCommandsList, near the 
end of our program. Then, whenever the user executes a command, it’s appended 
to allCommandsList; we want to save the commands as they’re executed rather 
than as they’re entered so that we don’t have to worry about saving record and stop 
commands (instead, we’ll save the “unpacked” version).

However, this presents an issue. allCommandsList is declared in the main 
part of our program. However, save will be a command that the user enters, so it 
will be processed inside executeCommand(). executeCommand(), however, 
can’t see the variables of the main program. This was similar to our problem 
with recordList and recording: for executeCommand() to work on them, it 
needed to see them, but they were defined outside executeCommand().

So, the way our program is structured right now, we would have to take care of 
saving and loading in that main while loop at the bottom as well. But this is getting 
messy: we want all our commands to be run through executeCommand(), not 
divided up between two places. We can do this, we just have to introduce a new 
principle: global variables.

Figure 4.4.16

	� �﻿   5.  Files and Turtles 	 235

18_joy8227X_ch04.4_p225–238.indd   235 01/12/16   7:54 am



Global Variables
A global variable is a variable that can be seen across the entire program. We force 
it to have a large scope. It can be seen inside the functions even if it wasn’t passed 
to them as an argument. Functions can be global as well, actually, and we’ve seen 
some: why were we able to see functions like print() and open() even though 
we never declared them anywhere? They were declared globally. We can declare 
our own variables and functions globally, too. In fact, it isn’t hard to do in Python.

By default, any variable declared in our main program has the potential to be 
global. The problem lies with our functions. When we create a function, by default it 
only sees the parameters with which it was declared. So, our executeCommand() 
function, by default, sees only commandTuple. Any variables we declare inside are 
assumed to be local to the function, unless we specifically tell the function to go look 
outside of itself for the variables. 

We do that on the first two lines: global recording and global 
recordList. These tell the function, “From here on, whenever you see a reference 
to recordList, go look at recordList in the main program”. This is a subtle dif-
ference, but it’s significant. This means that executeCommand() can now change 
whether the main program is recording or not.

So, when the user enters “record,” recording is set to True here in 
executeCommand(). When the user enters “stop,” the recorded commands are run 
inside executeCommand(). Now, the only “special” reasoning our main program 
needs is to (a) determine whether the newest command should be executed or 
recorded, and (b) to bypass that check if the command is “stop”. Without the latter 
reasoning, a “stop” command would merely be added to the list of recorded com-
mands; instead, the latter reasoning directs “stop” to be executed immediately.

Now we’re prepared to actually create our save and load commands. Defining 
things globally will help us create our save command, but we’ll also soon see that 
restructuring the recording process to use global variables will allow it to be loaded 
more easily as well.

The Save Command
With a global variable available, saving becomes actually a pretty easy process. 
We’ve already added reasoning to our program that saves every command as it comes 
in to allCommandsList. Now all we need to do is save allCommandsList to a 
file, and allow the user to execute that command.

So, we add three things:

•	 Save as an option in getCommandFromUser(). This will also allow the user 
to enter a filename to which to save. For now, we’ll assume that the filename 
they enter is valid.

•	 Save as an option in executeCommand(). This will actually call the save() 
function if the user enters save as their command.

•	 The save() function itself.

Because everything we’re saving is tuples, we’re just going to save the tuples 
directly. This means we won’t have to worry when reading these commands back in 
about how many parameters each has. So, when we save, we’ll find that every line 
of the file represents one of the tuples.

The Load Command
Now for the slightly harder part: the load command. There are different ways we 
can do this. For now, let’s construct the load command to load the commands from a 
file into a list and return the list. Let’s also update our save command to ignore load 
commands, too, and let’s keep assuming the file entered will be valid.

Global Variable
A variable whose scope is the 
entire program; it is visible within 
any function or method in the 
program.

236	 Chapter  4.4  File Input and Output

18_joy8227X_ch04.4_p225–238.indd   236 01/12/16   7:54 am



Adding our load function involves calling a library and method we’ve never 
seen before. The library is ast, and the method is literal_eval(). Don’t 
worry about what this does for now, just know that this reads a line from a file 
and interprets it according to Python syntax; in this case, it correctly interprets 
a string that represents a tuple as a tuple. Note also you should generally do all 
your imports at the start of the program; I’m including the import here just to 
highlight it.

So, now we have a list of commands contained within loadedCommands. 
What do we do with it? Simple: we run them! Remember, we saved commands 
as they were executed, not as they were entered. That means that we don’t need 
the reasoning for dealing with recording and stopping; if a set of three commands 
was repeated five times, then we saved all fifteen commands individually. So, after 
retrieving our loaded commands, we just iterate over them, executing them one 
by one.

The final result: it actually took relatively little work to create these save and 
load commands. Excluding the conversion of recording and stopping to global vari-
ables, we’ve only added 29 lines:

•	 Four lines to give the save and load options to getCommandFromUser().
•	 Six lines to execute the save and load commands in executeCommand().
•	 Four lines to build allCommandsList.
•	 Eight lines to build the save function itself.
•	 Seven lines to build the load function itself.

Notice that the way we’ve structured this, if we load some commands from a 
file, then save our own commands, the commands we loaded are saved as well; so, 
we can add other commands to a new program, and save them without having to 
save the original file.

Looking Forward
Note that this has gotten extremely complex. The goal here is not necessarily for 
you to understand every part. The goal is for you to understand the general idea 
of complexity and program flow. Trace through some executions of this code and 
notice how execution passes back and forth from function to function, how loops 
run over saved commands or recorded commands, and how tuples are used to 
communicate commands around. Notice how I’ve referenced some methods and 
specifically told you not to worry how they work, like ast.literal_eval(): 
that’s part of programming, using methods you don’t understand because you know 
their result.

There are also lots of places this program could still be improved:

•	 Files are still unchecked for validity. The program will crash if the user saves to 
an invalid filename, or loads from an absent file.

•	 Recording can’t be nested. Since recording is stored globally, we can only ever 
have one recording at a time. It would be cool if we could include a recording 
within a recording, like a nested loop.

•	 Right now, we’re looping over commands in three places: the main while loop, 
the loop repeating recorded commands, and the loop repeating commands 
loaded from the file. Ideally, we would only have one such loop. We could 
restructure the program to have only one executeCommands() function that 
takes as input a list of commands and executes them.

This is indicative of the overall process of writing programs: there’s always 
room for expansion, improvement, and refinement. This is the programming life 
cycle: evaluating our code also gives us ideas for how to improve it even more going 
forward.
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Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to: 

•	 Understand the nature of 
dictionaries as collections of keys 
and values, similar to variables 
and values, and the power therein;

•	 Construct dictionaries, as well as 
complicated reasoning centered 
around dictionaries simulating 
objects;

•	 Read and describe using function 
calls as values in maps.

4.5Dictionaries

c h a p t e r 

1.  What Is a Dictionary?
A dictionary is a book where, if you have a word, you can look for its definition. 
But you probably weren’t wondering about a dictionary in the real world, you were 
probably wondering about a dictionary in computing. So, replace “book” with “data 
structure,” “word” with “key,” and “definition” with “value,” and you have the defi-
nition of a dictionary in terms of computing: a dictionary is a data structure where, 
if you have a key, you can look for its value.

Dictionaries vs. Variables
Values are the same here as they have been everywhere else: a value is an actual 
data value, like “Hello, world” or 5 or 5.1. What is a key, then? A key is the name 
that brings up that value. Now you might be thinking: wait, isn’t that just a variable? 
A variable is a name that, when referenced, brings up a value. And you’d be exactly 
right. Just as there is a 1:1 connection between variables and values, so also there is 
a 1:1 connection between keys in a dictionary and values.

So what makes them different? A dictionary is like a compilation of multiple 
key-value pairs that you can pass around together. Recall that one challenge of 
functions is that you can generally only return one value. A dictionary would let us 
return multiple values from a function. We’ve been able to do that before with lists, 
tuples, arrays, or some other structure like that, but a dictionary would preserve the 
ability to give names to those values by way of keys. So, in one way, we can think 
of a dictionary as a holding structure for several variables and their values.

Dictionaries vs. Lists
Like lists, dictionaries can hold multiple values. Depending on the language, these 
values might have an order to them. They might be sortable, or they might arrive in 
random order whenever they’re accessed. Either way though, both lists and diction-
aries store multiple values.

The key distinguishing factor of a list, however, was that the values of a list 
had to be accessed via a numeric identifier called an index. A list would have a first 
value, a seventh value, and a twelfth value. The only way to access the seventh value 
was to ask the list for the seventh value.

Imagine, though, that each item in the list was a student, with their name and 
their current average; maybe this was stored as a tuple, a list, an array, or even a 
custom object like what we’ll discuss next unit. Now imagine that you knew you 
wanted to access David’s grades. How would you do that with a list? You would 
have to iterate over the list one item at a time looking for David.

Dictionaries use keys instead of numeric indices. What that means is that you 
access the values of the dictionary by putting in the key, not by putting in an index. 
If you want David’s grades, you use “David” as the key, and the grades pop right 
out. Keys are like non-numeric indices, but because they’re non-numeric, they can 
take on intuitive meanings, similar to variable names.

Imagine, for example, storing calendar items. The key for each list of calendar 
items could be the date itself, so if we wanted the calendar items for September 12th, 

Dictionaries
A data structure comprised of 
key-value pairs, where a key is 
entered into the dictionary to 
get out a value. Similar to or 
synonymous with Maps, Asso-
ciative Arrays, HashMaps, and 
Hashtables.

Dictionary Key
A value then, when passed 
into a dictionary, returns a cor-
responding value, like a word 
and its definition. Similar to a 
variable.

Dictionary Value
A value returned in response to 
a key in a dictionary. Similar to 
a value of a variable outside a 
dictionary.
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we could use September 12th as the key instead of trying to calculate what numeric 
index corresponded to September 12th.

Dictionary Terminology
I keep referring to this data structure as a dictionary because the original language of 
this material refers to it as a dictionary, but different languages have different names 
for structures like these. They can sometimes have subtle differences, but generally 
the concept is the same:

•	 “Dictionary,” our current term, is so named because it echoes the idea of looking 
up words (keys) to find their definitions (values). Dictionaries suggest (but do 
not require) that the keys will be strings. Python, Swift, and the .NET languages 
use this term.

•	 “Map” is essentially a synonym to Dictionary. Some languages use the term 
“Map” because it echoes the mapping between keys and values and reinforce 
that keys need not be strings. Java and C++ use “Map”.

•	 “Associative Array” is another synonym. This term echoes the idea of two 
arrays with associations between them. PHP, JavaScript, and others sometimes 
use this term.

•	 “Hash,” “Hashtable,” and “HashMap” are implementations of Dictionaries or 
Maps. These terms are somewhat synonymous, although they contain an extra 
layer of detail; the term “Hash” refers to the way in which the data structure is 
constructed, not just how it is used. Perl, Lisp, and Ruby use some of these terms.

So, if you see any of these terms, know that they refer to effectively the same 
thing: a data structure comprised of a collection of keys mapped to values.

2.  Dictionaries in Python
One of the things that makes Python unique as a programming language is the 
accessibility of its dictionaries. In most languages, dictionaries are a little clunky to 
use; they can only be declared with special constructors (we’ll talk about that next 
unit), and they’re only usable through methods. Python, however, gives us an in-line 
method for defining dictionaries.

Creating and Accessing Dictionaries
For example, let’s imagine we’re creating an inventory program. In this case, our 
keys would be product names, and our values would be the current stock of that item.

How would we declare a dictionary with product names as keys and inventories 
as values? Well, we used brackets for lists and parentheses for tuples, I bet you can 
guess what we’ll use for dictionaries.

Figure 4.5.1

To define a dictionary, we enclose it in braces, as shown on line 2 in Figure 4.5.1. 
There are actually several other ways to declare them, too, but we really only need 
one, and this one is most intuitive in my opinion. 

For dictionaries, we need to declare both the key and the value. In lists and 
tuples, we could jump straight to the values because the indices were inferred: the 
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first item was 0, the second was 1, and so on. With dictionaries, however, our keys 
have to be supplied manually. So, each key-value pair in our dictionary is defined 
with the syntax key:value, as shown in line 2. Here, the key “sprockets” has the 
value 5, the key “widgets” has the value 11, and so on.

Functionally, this is the equivalent of creating four variables (sprockets, 
widgets, cogs, and gizmos), and assigning each the corresponding value (5, 11, 
3, 15, respectively). However, because they’re contained within the dictionary, we 
can pass this list to a function or method, and it would retain access to every key and 
its associated value. Notice also that the order of the pairs is different when we print 
the dictionary on line 3 from the way we declared it: dictionaries in Python aren’t 
guaranteed to preserve the order of their values the way tuples, lists, and strings do.

Keys in dictionaries must be immutable: strings, integers, and floats can be 
keys. Tuples can also be keys, if and only if each individual item in the tuple is itself 
immutable (such as strings, integers, floats, or other immutable tuples). The reason 
for this is that if the key changes, the dictionary won’t know what value is associated 
with it; so it must guarantee the keys cannot change.

Values, on the other hand, can change. In fact, if this program was to be used 
for inventory management, we would absolutely need to change the values. We can 
do this by accessing individual items from the dictionary, as shown in Figure 4.5.2.

Figure 4.5.2

Figure 4.5.3

The print() statements on lines 3 and 5 show that the operation on line 4 does 
change the value associated with the key “sprockets” in myDictionary. This also 
shows how we access individual items from a dictionary: using the same syntax as 
with lists, strings, and tuples, but with keys inside the brackets instead of indices.

Adding to and Removing from a Dictionary
So, we’ve created a dictionary in Figure 4.5.2. How do we add new items to it? You 
might be tempted to try to call an append() method like we used with lists, but 
in dictionaries, we don’t need to. We create new key:value pairs in dictionaries the 
same way we create new variables: by assigning a value to a new key. Figure 4.5.3 
shows this in action.
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If we wanted to create a variable called gadgets and assign it the value 1, 
we would just say gadgets = 1. Similarly, if we want to create a new key in 
myDictionary called “gadgets” and assign it the value 1, we would just say 
myDictionary["gadgets"] = 1, as shown on line 7 of Figure 4.5.3. This 
creates the new key if it doesn’t already exist, or reassigns it if it does already exist, 
just as if it was a variable. Similarly, we can delete a key by using that special del 
operator, as shown on line 9. The print() statements on lines 4, 8, and 10 confirm 
that the key “gadgets” was added, then removed.

The reason we create and use keys this way is that a dictionary cannot have 
multiple copies of the same key; if it did, it wouldn’t know which value to return for 
that key. In other languages, the method for adding new keys is differentiated from 
the method for assigning values to existing keys, and those languages would throw 
an error if we tried to add a previously existing key again. Here, though, we have no 
way of adding a key besides assigning it as if it already exists.

Sometimes, though, we might want to check to see if a key exists before assign-
ing it. For example, imagine if we were building a phonebook app, and if the user 
tries to create a key that already exists, we want to prompt them for a different key 
instead of changing the phone number of the existing key. We can do that by check-
ing if a key exists before referring to it, as shown in Figure 4.5.4.

Figure 4.5.4

Figure 4.5.5

The in operator, by default, operates on the keys of the dictionary. In 
Figure 4.5.4, “David” is already a key in the dictionary, so line 8 returns True, 
causing the code to try again with “David2” as the key. We can also use the 
keyword in to avoid the error caused when we look up a key that isn’t in the dic-
tionary, as shown in Figure 4.5.5.

If we’re uncertain if a key will appear in the dictionary, we should either 
(a) check if it appears using in before trying to access it, or (b) be prepared to catch 
the KeyError shown in Figure 4.5.5.
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Traversing Dictionaries
As noted, the main benefit of dictionaries is that they give us useful keys so we can 
jump straight to the value we want. However, there will still be lots of times we want to 
traverse every item in a dictionary. For example, in our inventory program, perhaps we 
want to make sure to order more of any item that drops below 5. There are a number of 
ways we could do this. First, if we don’t care what key gives us these values, we could 
iterate over the values() directly, as shown in lines 5 through 7 of Figure 4.5.6.

values()
A method of the dictionary type 
that returns a list of all the values 
of the dictionary.

Figure 4.5.6

Figure 4.5.7

Figure 4.5.8

More commonly, though, we’ll want the key and the value. So, instead, we 
could iterate over the keys, and then grab the value from the dictionary based on the 
key, as shown in lines 5 through 8 of Figure 4.5.7. Notice that here we’re iterating 
over myDictionary.keys() in line 5, but this has the same effect as iterating over 
myDictionary itself; it assumes it should use keys if we don’t tell it otherwise. 

keys()
A method of a dictionary type that 
returns a list of all the keys in that 
dictionary.

It’s also possible, however, to iterate over the keys and values simultaneously. 
This is a shortcut similar to the for-each loop itself where multiple parts of the 
sequence can be loaded into variables. Here, it’s assumed that the order is key, value, 
as shown in line 5 of Figure 4.5.8. So, we can iterate over the keys in the dictionary, 
the values in the dictionary, and the keys and values together.
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3.  Dictionary Applications 
Dictionaries are extremely powerful data structures, even when just used the way 
we’ve discussed them so far. However, some of the benefits of dictionaries are that 
they allow us to create a low-overhead version of object-oriented programming. 
Object-oriented programming is our next chapter, and it’s a big and important topic, 
so we’ll preview it here.

Simple Dictionary Applications
With a single dictionary, there are a lot of things you can do. For example, imagine 
you want to count the most common words in a book. If you have the book in 
plaintext, how would you do that? First, you’d likely replace all the punctuation 
marks and other symbols with spaces, so that you don’t get stuck treating a word 
with a period after it as a different word from its other appearances. Then, you’d 
probably change the entire thing to lower or upper case so you don’t have to worry 
about capitals.

Figure 4.5.9

Figure 4.5.10
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Dictionaries and Lists
A big part of the usefulness of dictionaries comes when we use them in conjunc-
tion with other lists or dictionaries. For example, imagine we’re keeping track of 
students across a school at a given time of day. We might have a dictionary of class-
rooms, where the keys are the classroom numbers and the values are lists of students 
in these classrooms. That way, at any given time we can look for how many students 
are in a class as well as which students are in a class.

Alternatively, imagine we’re building a more comprehensive address book 
program. We want each person in the address book to have a name, an address, a 
phone number, and an email address. We want to access them by their names. So, 
the keys would be the names, and the values could be a tuple or list, containing their 
address, phone number, and email address.

However, that design still poses a problem: because the address, phone number, 
and email address are stored in a list or tuple, we have to remember which index 
corresponds to which kind of data. If we forget, we may load the phone number as 
the email address or vice versa. However, dictionaries let us use non-numeric keys 
instead of numeric indices, and that is immensely powerful.

Figure 4.5.11

After that, though, what would you do? You very likely might split the book by 
spaces, then start iterating over each individual word. When you find a word you 
haven’t seen before, you add it as a key to your dictionary with a value of 1. When 
you find a word you have seen before, you look for it in the dictionary and increment 
its value. In the end, your keys are all the words in the book, and your values are all 
the counts of each word.

Alternatively, imagine you were creating a seating chart for a wedding. How 
would you do this? You could have a list of all the seats, or a list of tables each 
with a list of seats. However, this would mean you would need to know the table 
and seat number to look who was sitting there. In all likelihood, that’s backwards: 
you’re probably not looking for, “Who’s at table 5 seat 3?”, you’re looking for, 
“Where is Addison sitting?” So, you could do this with a dictionary instead: 
the keys are the individuals’ names, and the values are the seat assignments, as 
either strings (e.g. “5-3”) or as tuples (5, 3). That gets into our more complex 
application of dictionaries: merging dictionaries with lists, tuples, arrays, or 
other dictionaries.
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Dictionaries as Simple Object-Oriented Programming
We’ll cover object-oriented programming in the next unit. For now, though, what 
you need to know is that an object is a custom data type that can contain multiple 
individual variables and methods, each with its own name. That’s powerful; we 
could, for example, create a Person object that would let us store a first name, 
last name, and phone number together in one data type, but each individually 
accessible.

However, dictionaries actually already let us do that. In this address book 
example, we had a dictionary of tuples or lists, where the three items on the list 
represented addresses, phone numbers, and email addresses. Instead of collecting 
these in a list, however, we could collect them in a dictionary, where the keys are 
the types of information (“address,” “phone number,” and “email address”), and the 
values are that individual person’s values. 

The unique twist here is that in this case, we would have lots of dictionaries, 
each with only a few items. Most importantly, though, each dictionary would have 
the same keys. So, we could iterate over every person in the address book and get 
their email address just by requesting their email address by name from their indi-
vidual dictionary. This is immensely powerful.

4.  Dictionary Applications in Python 
Before moving on to these super-advanced types of dictionaries, let’s explore some 
of the more accessible applications a little bit more.

Simple Examples of Dictionaries
First, let’s see some code that counts the words in a string using a dictionary. This 
is shown in Figure 4.5.12.

Figure 4.5.12

We start by defining the string, myString, on line 1. We then modify it on lines 
3 through 7 it so that it contains only the words: we remove punctuation (lines 3, 4, 
and 5), make it lower case (line 6), then split it by spaces so that we have a list of 
words (line 7). We then iterate over that list of words starting on line 10. For each 
word that isn’t yet in the dictionary, the conditional on line 11 is False, so we add it 
to the dictionary with a value of 1 on line 14 because 1 instance has been found. For 
each word that is already in the dictionary, the conditional on line 11 is True, so we 
just increment its counter on line 12. In the end, our dictionary contains all the words 
in the string as keys, and the count of these words as their corresponding values.

246	 Chapter  4.5  Dictionaries

19_joy8227X_ch04.5_p239–252.indd   246 01/12/16   6:40 am



For our second example, let’s define the seating chart for a wedding. First, we’ll 
show how this would be used to look up a particular person’s seat. Second, we’ll 
show how we would use this to find a listing of all the people at each table. For 
example, we’ll keep it simple and assume we’re only assigning people to tables, not 
to specific seats at tables. We’ll assume 3 tables, 6 seats each. This code is shown in 
Figure 4.5.13.

Figure 4.5.13

First, we create the seating chart with 18 key:value pairs on line 1; each pair is 
a name and a table number. Notice how we can separate the dictionary declaration 
onto multiple lines after commas. Then, we iterate over each name:table pair in 
the dictionary starting on line 9 and print the name and its table; seatingChart.
items() returns these pairs as tuples. Then on lines 15 through 23, we iterate 
over the three table ID numbers 1, 2, and 3. Within each iteration, we iterate over 
each person on the seating chart on lines 18 through 22 and check if their table 
number matches the current table number on line 20. If so, we print their name 
on line 22.

Dictionaries and Lists
For our classroom roster, we first define a dictionary of classes, as shown in lines 1 
through 5 of Figure 4.5.14. Each class has a name as the key and a list of students 
(as defined by the brackets) as the value. Notice here how easily we can use lists as 

items()
A method of the dictionary type 
that returns all the items in the dic-
tionary as (key, value) tuples.

Figure 4.5.14
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values instead of just simpler values on their own; we just put the same brackets and 
declaration as we usually would to define a list.

Then, we look up all the students in Computing with classes["Computing"]. 
This returns a list of students, which we print on line 7. Then, we decide to add Francis 
to History. We get the list corresponding to History with classes["History"] on 
line 9, and because this is a list, we can call append("Francis") on it. Then, when 
we print the History class roster on line 10, we see Francis is included.

For our address book, we sub out the lists for tuples, as shown in Figure 4.5.15. 
Here, we see on line 5 that we can print David’s complete information by printing 
his tuple, or we can print Dana’s phone number alone on line 6 by knowing that the 
phone number is at index 1. But that last note is exactly where we find some real 
power in dictionaries: why should we have to remember that the phone number is 
at index 1 when we can instead use a dictionary and store the phone number with 
key “phone number”?

Figure 4.5.15

Figure 4.5.16

Dictionaries as Objects
One of the most powerful parts of using dictionaries is the ability to have multiple 
dictionaries with the same keys, but different values. This data structure is a low-
overhead version of object-oriented programming, which we’ll cover in the next 
chapter. To start, let’s convert that address book code to use these nested dictionaries 
in Figure 4.5.16.
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In this case, our code has gotten a bit longer: instead of the inferred numeric 
indices, we now supply actual keys for the dictionaries, as shown on lines 
1  through 6. Compare Figure 4.5.16 to Figure 4.5.15 to see the difference. 
However, the trade-off is that this is now much easier to use. We don’t need to 
remember the order in which the different types of data are contained inside the 
items of the dictionary; we just need to remember that phone number is stored 
with key “phone”, address with key “address,” and email address with key 
“email”. Don’t underestimate that trade-off: it might seem easy to remember this 
for these three values, but imagine if you were dealing with several different dic-
tionaries with several different types of data, or with one dictionary with twenty 
different fields. With lists, you would need to remember the index for each type 
of data, as well as remember to declare them in the right order. With dictionaries, 
you merely need to remember the name for each type of data, similar to how you 
would remember a variable.

Note that this merely implements something resembling object-oriented pro-
gramming in the simplest terms. In real object-oriented programming, we can have 
methods as well as variables contained within each item, as well as other advanced 
features. Still, this approach gives a glimpse of the power of object-oriented pro-
gramming, as well as a way to realize some of its benefits with relatively low 
overhead.

To show this off, let’s take one more example. Imagine we’re teaching a 
class with five students, and we gave a multiple choice test with five questions. 
Now, we want to grade the test. We could do that with dictionaries, as shown in 
Figure 4.5.17.

Figure 4.5.17

Here, we create three students and give them five answers to the five ques-
tions each on lines 4, 5, and 6. We also create an answer key on line 1. Then with 
the for loop on line 9, for each student in the dictionary of students, we grab their 
answer dictionary and store it in answers. Then, for each question in the dictionary 
answers, we grab its answer with the for loop on line 12. If the value for answer 
to the key question matches ANSWER_KEY’s value (answer) for the corresponding 
key (question) in the conditional on line 14, we add one to grade on line 15. Then, 
at the end on line 17, we create a new key-value pair between “grade” and their 
score, stored in the variable grade.

The loop at the end (lines 19 to 21) isn’t totally necessary here; we could have 
printed out the grades in the first for loop. However, it’s here to demonstrate the 
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power of knowing that every element in the dictionary will have the same key. We 
know every student will have a “grade” key because we created it for each student on 
line 17, so we can run a loop over all students, getting their grade.

5.  Dictionaries and Turtles 
Over the past several lessons, our turtles code has gotten more and more complex. 
In some ways, that’s not bad: it’s a complicated program, and its goal is to show you 
how the simple rules you’ve been learning can be chained together to form mas-
sively complex programs.

In other ways, though, it’s a bad thing. Giant multi-layer if statements are often 
frowned upon because they’re difficult to read and navigate. We might also notice 
that our commands are, in some ways, like keys to a dictionary: it’s just that in this 
case, the values are the lines of code that run in response, not variables. Could we 
create dictionaries whose values are actually references to functions? Yes! Follow 
along in DictionariesandTurtles.py to see how.

Replacing Conditionals with Dictionaries
Let’s start by trying to replace the giant series of conditional statements that get 
the user’s input with something dictionary-based. Take a look at that conditional 
inside getCommandFromUser(): notice anything? Every branch follows the same 
pattern: get arguments, then create commandTuple with the command in the first 
spot. Instead of this complex branching series, we could instead create little func-
tions for each, and then just call the function based on the command name as estab-
lished by a map. Let’s try that out.

You might have to trust me for now when I say this code is better. It 
seems incredibly strange. What have we done? We’ve taken the entire body of 
getCommandFromUser() and executeCommand(), and we’ve split each 
branch into its own function, named things like getSnowflakeCommand() and 
executeTextCommand(). Why did we do that?

Take a look at COMMAND_DICTIONARY. Here, we see every command the user 
can enter, from turn to end. This is a dictionary, so the command names themselves 
are keys. What are the values? Other dictionaries! What are the keys of these other 
dictionaries? Every one of these dictionaries has the keys "get" and "execute" 
What are the values? Brace yourself: the values are the functions themselves. 
Functions are variables. So, we can put the function names here.

So what happens? Well, the while loop that drives the program is unchanged. 
So, let’s take a look at getCommandFromUser(). Previously, this would get a 
command from a user, then run a big conditional statement checking the command’s 
value. It would choose which arguments to get based on the command’s value. It 
was a long function. What about now? It’s only 6 lines! How did we replace over 
30 lines with 6?

The first two lines are the same: we get a command from the user. However, 
instead of using that command in a conditional, we instead use it as the key to 
our COMMAND_DICTIONARY. If it’s not a key in the dictionary, our command-
Tuple is just the “Invalid” tuple. If it is a key in the dictionary, though, the magic 
happens.

Let’s take a close look at the line here: return COMMAND_DICTIONARY 
[command]["get"](). What a crazy line. It starts with return, so we know what 
comes out of the rest of it must be our commandTuple. We start from left to right. 
COMMAND_DICTIONARY[command] takes the command and uses it as the key to 
the dictionary. We know the command is valid because of the earlier conditional. 
So, what comes out of COMMAND_DICTIONARY?
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Let’s assume the user’s inputted command was ‘forward’. So, our line is now 
COMMAND_DICTIONARY["forward"]["get"](). The result of COMMAND_
DICTIONARY["forward"] is another dictionary. This other dictionary has two 
keys, “get” and “execute”. So, COMMAND_DICTIONARY[“forward”][“get”] returns 
the value associated with “get” in the second dictionary. What value is that? 
getForwardCommand. It’s the name of the function. Then, the end of the line is (), 
which tells Python to actually run the function.

So, COMMAND_DICTIONARY[command]["get"]() tells Python to run the 
“get” function associated with the command the user entered. That function 
does the same thing it did before: it gets the user’s input (in this case, just a dis-
tance), creates the commandTuple that holds the command and the arguments, and 
returns it. Since we’re returning the result of COMMAND_DICTIONARY[command]
["get"]() as well, we return the commandTuple all the way back out to the 
main program.

After all that work, the result is exactly the same. We could have made these 
changes and our users would never even notice. Notice that executeCommand() 
is the same. Instead of a big conditional, it uses a map to find the right execute 
command to run. Here, though, it actually passes the commandTuple itself so that 
the execute commands can have their arguments. Other than that, the only differ-
ence is that we have to define recording, recordList, and allCommandsList as 
global within the execute functions for record, stop, and save.

As I’ve said repeatedly before, don’t worry if this is confusing. In fact, if this 
isn’t confusing, please contact me so that I can hire you to teach this class. This 
is an incredibly complex example of Python reasoning and syntax. It’s taken me 
several hours to compile this to this point, and I’ve learned a lot in the process. The 
goal is not for you to understand exactly how this works. The goal is for you to see 
an example of a complex, authentic Python program as it is developed. Do try to 
understand it as best as you can, but don’t be discouraged by it.

Why Is This better?
The big question you might have is: In what way is this actually better? “I under-
stood the earlier way!” you might say. “You’re just making it more complex on 
purpose to show off these principles!”

While that’s partially true, this actually is better. Why is it better? Good program-
ming practice is typically built around lots of small, reusable functions. Originally, our 
main program was extremely large. When we converted getCommandFromUser() 
and executeCommand() to functions, we shrunk down the size of the main 
program, but we replaced it with two even bigger functions.

Now look at our code, though. No function over 8 lines. Our main program code 
is only 7 lines, 11 if you include the initializations of things like command and record-
ing. Our functions are highly reusable: we could copy executeDrawSnowflake() 
to any program that stored arguments the same way we do.

Consider also how we would add new commands to this now. We would add 
them to the COMMAND_DICTIONARY, then also create dedicated functions for them. 
However, we don’t have to trace through the program code to find the right place to 
add the functions or their reasoning. We don’t have to create a new branch of a giant 
conditional. Just by adding them to the dictionary and creating their functions, we 
add them to the program. We could copy and paste someone else’s functions directly 
into our code without worrying about integrating it beyond just adding it to our list 
of supported commands.

That’s what makes this code better: small, modular functions with very few 
interdependencies.
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255

Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to: 

•	 Describe the use of objects and 
recognize the difference between 
an object and an instance;

•	 Explain the principles of object-
oriented programming;

•	 Define objects in Python and 
use principles of object-oriented 
programming for declaring 
methods and combining classes.

5.1Objects

c h a p t e r 

1.  What Are Objects?
At this point, we’ve covered the basics of computing. Congratulations! So far, 
you’ve covered the principles and methods that put a man on the moon. The tech-
niques you now know covered the state of the art of computing for its first several 
decades of existence.

Surprisingly, though, the principles needed to put a man on the moon were far 
simpler than the principles needed to load up that gif of a cat falling down on your 
phone. Modern cloud computing, virtual reality, and even typical web development 
require more complex frameworks and paradigms than the ones responsible for the 
early days of the space program.

Unit 5 is our “advanced topics” unit. In this unit, we’re going to preview the next 
topics you’ll cover if you decide to continue your education in computing. We’re 
going to focus on two topics: objects and algorithms. In many ways, these two topics 
cover two different directions you could choose to go in computing. If you want to 
go into developing websites, video games, or other portions of the design side of 
computing, you’ll be using objects a lot. If you want to go into machine learning, 
theory, or the more mathematical side of computing, you’ll spend a lot of your time 
developing algorithms.

What Are Objects?
That brings us to the topic for this chapter. What are objects? Surprise! You’ve 
actually been interacting with objects throughout the past several chapters; we’ve 
just glossed over them and promised to come back to them later. Well, later is now.

Objects are custom data types that you get to create. We usually refer to the 
data types themselves as Classes. Just like you’ve been using data types to repre-
sent numbers, letters, and strings, you can create data types or classes to represent 
people, places, and items. In creating these, you specify multiple variables to be 
wrapped up into one data type.

One of the biggest strengths of programming with objects is that it lets us write 
programs the way we think about things in the real world. We’re naturally predis-
posed to think about the world in terms of generic objects. For example, you have 
the concept in you of a person. A person would be a single entity that has lots of 
variables assigned to them. They have a first name, a last name, and a middle name. 
They have a height, a hair color, and an eye color. They have a phone number and 
an e-mail address.

These are all variables that we could wrap up into one data type, and call that 
data type a Person class. The class tells us what variables should be specified for 
that type of object. A Person object would almost certainly have a first name and a 
last name, and that’s the reason why we know that asking, “What’s your name?” is 
a logical question to ask a new person. We know they should have a name because 
these are variables in that type. By that same principle, if we had a Chair object, 
we would find it very silly to ask, “What’s your name?” to a chair because “name” 
probably isn’t a variable we’d associate with a chair type.

Object
An object is a custom data 
structure that organizes and 
encapsulates variables and 
methods into a single data type. 
It is used near-interchangeably 
with “instance.” 

Object-oriented 
programming
A programming paradigm where 
programmers define custom data 
types that have custom methods 
embedded within them.

Class
A custom data type comprised 
of multiple variables and/or 
methods. Instances or objects 
are created based on the 
template provided by the class.
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Objects vs. Instances
So, a class is a generic structure for a certain kind of data. If we have a Person 
class, we expect it to have a name, a height, and an eye color. These are variables 
we expect to exist about people.

An instance, on the other hand, is a specific person. A Person class is a data 
type with variables for name, age, and eye color. David Joyner is an instance of a 
Person object with name “David Joyner”, age 30, and eye color brown. “David 
Joyner”, 30, and brown are values for these variables, just as David Joyner is an 
instance of an object of type Person. It might seem weird to differentiate the name 
“David Joyner” from the Person David Joyner, but ask yourself: if I change my 
name, am I suddenly a different person? No; having a name is a variable, my actual 
name is that variable’s value, but even if I change that variable’s value, the person 
is the same. It’s just difficult to refer to people without using their names! Think 
about this with something like chairs, though: a chair has a serial number, which is 
an unchanging name of that specific chair, differentiating it from other chairs of the 
same type. Even if we remove a leg and change the color, the serial number remains 
the same.

Classes are the general description of the types of variables associated with 
the type. An instance of the class is a particular example of an object of that type. 
You know what a person is, and you know that David Joyner is an example—an 
instance—of a person. Similarly, you know what a chair is in general, and the chair 
you’re probably sitting on right now is an instance of a chair. You know that chairs 
can have lots of variables, like a number of legs, a color, and a material; similarly, 
you know that the chair you’re sitting on is white, wooden, and has four legs. You 
know that not all chairs are white with four legs, just as you know that not all people 
are named “David Joyner”. The general concepts are classes, and the specific exam-
ples are instances of these classes.

2.  Objects and Instances in Python 
To get started, let’s talk just about how to define classes and instances in Python. 
We’ve actually already seen these in some places, but we didn’t refer to them by 
these terms. For this lesson, let’s stick to the running Person example. A Person 
should have a first name, a last name, an eye color, and an age. We’ll represent the 
names and eye color as strings and the age as a number.

Declaring a Class
Figure 5.1.1 shows how we would define our Person class. Line 2 here is the line 
that starts off the creation of a new object. This is similar to what we’ve seen in 
the past with loops and conditionals: the reserved word class tells the computer 
that it’s about to see a code block contained within the class, after the class name 
(Person) and a colon as usual. The contents of the class is indented.

Instance
A single set of values of a 
particular class. Classes may 
be comprised of multiple 
variables; an instance is a set of 
values for these variables. The 
term “instance” is often used 
interchangeably with the term 
“object”.

Figure 5.1.1
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What do we see next? On line 4, we see… a function! A function with the 
strange name __init__ and the strange parameter self. We’ll talk more about 
__init__ later, but for now, what you need to know is that __init__ is called 
when we first create a new instance of this class. Think back to when we would 
define strings: The string class actually had an __init__ method that was called 
whenever we created a new string. It just executes some code that will be needed 
for the rest of the program. Here, when we create a new Person, we want to give 
some default values to the names and eye color that emphasize that the real values 
haven’t yet been supplied.

When a function is defined inside a class, we call it a method. It still works 
the same way: when the method is called, the lines of code are executed in order. 
In the __init__() method here in Figure 5.1.1, there are four lines. Notice 
that each line starts with the variable name self. self is a little strange: it tells 
Python to define the following variable (like firstname) for the instance as a 
whole. If we leave off self, the variable has the same scope as a variable nor-
mally would in a function: it stops existing when the function is over. So, writing 
self.firstname says, “Any time we look at this instance’s firstname, it should 
be the same one!” Every method declared inside a class should have self as 
the first parameter, and every variable for the class should be preceded by self 
every time the variable is used inside the class. self is a little like saying ‘my’; 
it collects together the class’s variables.

Defining the Person class works just like defining the functions we’ve seen in 
the past. Seeing the line class Person tells the computer, “Hey, you need to know 
this concept of a Person.” Later on, we can actually use this concept in our code. 
Think of declaring a class like teaching someone a concept. If you knew someone 
wasn’t familiar with books, you would teach them that every book has a title and an 
author; then when you give them a book, they would know to look for the title and 
author. Teaching them the idea of a book having a title and author is like declaring 
a class; handing them a copy of Introduction to Computing by David Joyner is like 
having them create an instance.

Once defined, though, classes work like any data type. You can use instances 
of them as values in lists or tuples. If some of their variables are lists, you can loop 
over these lists. You can even use classes as values for other classes. For example, 
we could create a Name class that has two variables, firstname and lastname, as 
shown in Figure 5.1.2.

Method
A function defined inside of a 
class.

Self
A keyword in Python classes that 
is used to refer to the instance 
itself. It defines the scope of 
variables and methods that 
methods in the class can see.

Figure 5.1.2

In Figure 5.1.2, an instance of the Name class supplies the firstname and 
lastname to the Person class. We can use this to create extremely complex 
data structures that are nonetheless easy to use because everything is organized in 
logical ways.
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Creating Instances
Now that we have the class declared, we can use it in our program! We declare a new 
person with the line myPerson = Person(), as shown on line 12 of Figure 5.1.3. 
Notice that this syntax looks like we’re calling a function because of the parenthe-
ses after Person. This line is effectively like calling Person.__init__(), but 
Python is smart enough to let us leave out __init__ when it’s written exactly like 
that. So, calling Person() is like saying to the computer, “Give me a new instance 
of Person!” As a result, the computer creates a new instance, runs __init__ to 
do the initial setup, and then returns that new instance so that we can assign it to a 
variable, all on line 12.

Figure 5.1.4

Then, we can use myPerson like a normal variable. By calling myPerson.
firstname on line 14, we access self.firstname from within the instance. Notice 
that this is similar to calling something like myString.isupper() to check if a 
string is uppercase: firstname and isupper() are contained within the instance, 
and calling them gives an answer specific to that instance. The difference is that 
firstname is a variable while isupper() is a method, but we’ll talk about that in 
detail later.

Once we’ve created an instance of a class, we can also modify its variables 
just as if they were variables in our own program, as shown in Figure 5.1.4. We can 
print these variables by calling print(myPerson.firstname), or we can modify 

Figure 5.1.3
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Figure 5.1.5

them just by reassigning myPerson.firstname. Here on line 16, we reassign it to 
“David”, then print it on line 18 to see the change. What about in our more complex 
example, though, where we had separate classes for Name and Person?

In Figure 5.1.5, instead of accessing firstname directly from myPerson 
(myPerson.firstname), we instead access name from myPerson (myPerson.
name), and then access firstname from name (myPerson.name.firstname). 
name.firstname means “get name’s firstname”. So, myPerson.name.­
firstname “get myPerson’s name’s firstname.” We’ll stick with just one class 
for the most part, but know we can combine them like this as well.

Figure 5.1.6

The usefulness of objects is that we can create multiple instances, each with 
their own values. For example, we could create mutliple variables to represent mul-
tiple people, and give each person a unique name, as seen in Figure 5.1.6.

In Figure 5.1.6, we define two instances of the Person class, myPerson1 and 
myPerson2. Changing the first name of myPerson1 doesn’t impact myPerson2, 
as confirmed by the print() statements on lines 18 and 19. We could thus create 
lists of lots of instances of Person to represent class rosters or directories, and 
modifying one instance wouldn’t affect any of the others.
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In each case, we define an instance (of type dictionary on line 8 and of type 
Person on lines 11 to 13) that represents David Joyner. For the dictionary, it’s with 
the key firstname and the value “David”, and for the class it’s with the class vari-
able firstname and the value “David”. So what’s the benefit of using class instead 
of dictionaries? First, by defining classes, we guarantee (rather than assume) the 
keys are what we expect them to be. Second, classes can have methods as well as 
variables, while dictionaries have only variables; in other words, dictionaries only 
store data, whereas classes can also act on data.

In Figure 5.1.7, it would seem that the benefit of dictionaries is that we can 
define everything in one line, but there’s a way we can do that with classes, too, 
which we’ll cover next.

3.  Encapsulating Methods in Classes 
Part of the power of classes and instances is that they let us create data types with 
logical combinations of variables. We could create a Person class with a person’s 
name, eye color, age, address, and telephone number. We could create a Chair class 
with a chair’s color, material, number of legs, and style. We could create a Student 
class with a student’s name, student ID number, and a list of their course enroll-
ments. These course enrollments could themselves be instances of a CourseData 
class, which would have a list of the student’s grades in that class. We can use 
objects to create complicated schemes of data that are still relatively easy to use 
because they’re organized logically.

That’s only half the power of object-oriented programming, though. The other 
half is that classes can contain methods—their own dedicated functions—as well 
as variables.

Encapsulating Methods
Encapsulation is the principle of object-oriented program that describes organizing 
variables and methods together into custom structures. I’ve saved defining the term 
until here because while it applies just to variables as well, methods are what make 
encapsulation truly powerful.

Encapsulation
The ability to combine variables 
and methods into class definitions 
in object-oriented programming. 
It helps avoid modification or 
misuse of data by other functions 
or programs.

Objects vs. Dictionaries
Recall that at the end of the Chapter 4.5 on dictionaries, we briefly discussed using 
dictionaries to create object-like structures. Specifically, we said that if we used the 
same keys across multiple dictionaries, we were effectively creating objects. Check 
out the similarity in Figure 5.1.7.

Figure 5.1.7
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A method is a function defined inside of a class. It has all the same properties: a 
name, a list of parameters, some code, and optionally a return statement. The scope 
inside the method is defined as the normal scope of a function for that language 
(typically the method’s parameters and any variables it defines in its own code), plus 
any variables that are visible in the instance of the class as a whole (accessed via 
that self variable). So, in the case of a Person class with class variables first-
name and lastname, the class might have a getFullName() method that would 
return the first and last name together. Because the first and last name exist inside 
the instance, the method getFullName() could see them and manipulate them 
before returning the name.

Common Method Types: Constructors and Destructors
Methods can be used for anything we use functions to do. For example, if we 

had a class representing a person’s bank account called BankAccount, it might 
have a variable to represent the current balance, and methods to check the balance 
and attempt a transaction.

There are four common types of methods, however, that tend to come up a lot 
in the implementation of classes. The first two are constructors and destructors. 
Oftentimes, these both have special syntax in a language to set them apart so that the 
computer can recognize them. A constructor contains code that will run every time 
a new instance is created; it’s kind of like a “setup” method. For example, if a class 
has a list, the list needs to be initialized before it can actually be used; this is done 
in the constructor because it guarantees it is performed before it’s needed. Or, in 
our BankAccount example, we would typically assume every newly-created bank 
account has no balance, so in the constructor we would initially set the balance to 0.

Since constructors are methods, they can take arguments for parameters as well. 
In other words, when someone is first creating an instance of a Person class, they 
could supply the first name and last name as arguments directly to the constructor. 
The constructor, then, would initialize the instance with these initial values. So, a 
constructor is a method that is automatically run whenever you create a new instance 
of a class; any code you want to run before the instance can be used should be placed 
in the constructor.

A destructor, on the other hand, is a method that deletes the instance. This is 
most pertinent in languages where the programmer is asked to do a lot of manual 
memory management, and for the most part these principles are outside the scope 
of this material. Generally, though, destructors can be useful if you’re dealing with 
massive quantities of data and find yourself running out of memory: you can free 
some up by destroying instances when you’re done with them.

Common Method Types: Getters and Setters
Getters and setters are simple method structures that allow code to interact with the 
variables inside an instance. A getter simply returns the value of a certain variable, 
and a setter changes the value of a variable.

Why do we need to do these through methods, though? Can’t we just access 
these variables directly? Many times, it’s best to design our code such that the 
variables inside it cannot be modified directly. For example, imagine again that 
we’re writing a class to represent a BankAccount. Imagine this class is going to be 
accessed by different banks and customers. We don’t want them all to just be able 
to change the value of myBalance at will: they should only be able to change it in 
certain ways, like in a transaction. Methods like getters and setters let us dictate the 
rules under which class variables can be accessed and changed. 

Even if we’re writing a class where we don’t mind if the variables are accessed 
and changed haphazardly, we still might want to know about these changes. Because 
getters and setters are methods, we can build whatever code into them that we want. 
Imagine that we want to build a log every time someone accessed or changed a 

Constructor
A common type of method in 
writing classes that specifies 
some code to run whenever 
a new instance of the class is 
created. The constructor often has 
parameters that provide values to 
initialize the variables defined by 
the class.

Destructor
A common type of method in 
writing classes that specifies how 
the instance of a class is to be 
destroyed, such as releasing its 
memory back to the computer.

Getter
A common type of method in 
writing classes that returns the 
value of a variable contained 
within the class. They are 
commonly used to allow other 
processing to occur whenever the 
variable is accessed, like logging.

Setter
A common type of method in 
writing classes that sets a variable 
contained within the class to a new 
value. They are commonly used 
to allow other processing to occur 
whenever the variable is changed, 
like logging.
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certain piece of data. By using getters and setters, we allow ourselves to run some 
logging code every time these methods are run. If other code was accessing the 
variables directly, we wouldn’t be able to log when the data was accessed.

Some languages go so far as to dictate the use of getters and setters. Some lan-
guages have a concept of “privacy” in the variables and methods they encapsulate: 
they can determine whether a variable or method is public, where it can be accessed 
from outside the instance, or private, where it can only be accessed by methods 
within the class. So, in our BankAccount example, we might state that myBalance 
is a private variable, meaning it can only be accessed by methods inside the class. 
getAccountBalance(), on the other hand, would be a public method that returns 
myBalance. In that way, myBalance is still accessible, but it can’t be modified, 
and BankAccount can log every time it is accessed.

4.  Encapsulating Methods in Python
In many programming languages, class variables are defined outside of any par-
ticular method. Python, interestingly, doesn’t support that: if you define a variable 
outside of a method, then that variable exists once and has the same value for every 
single instance of that class (which is called a “static” variable). Sometimes that’s 
useful, but we won’t really talk about these times here; instead, we’ll focus on how 
to use class variables and methods the more typical way.

Constructors in Python
We’ve already seen a constructor in Python, and in order to define class variables in 
Python, we have to define them inside a method, preceded by that self variable. 
So, recall the code shown again in Figure 5.1.8.

On line 4, __init__ is Python’s convention for identifying constructors. 
Whenever a new instance of a class is created, Python goes and searches for the 
class’s __init__ method and runs it if it exists. If it doesn’t exist, that’s alright; 
Python just creates the instance without running any initial code. Here, running this 
constructor creates the variables firstname, lastname, eyecolor, and age to be 
seen later. 

Notice, however, that __init__ is a method, and that it has a parameter list 
given in parentheses on line 4. Because it’s a method in a class, its first parameter 
must always be self; this is what lets the method see the variables defined for the 
instance. After that, however, we can define parameters as normal. If we wanted to 
be able to create a new person and define that person’s first name and last name from 
the start; we could write the code shown in Figure 5.1.9.

When Person("David", "Joyner") is run on line 11, Python automati-
cally goes looking for __init_ in the Person class. It finds it, and pairs the first 
argument “David” with the first parameter firstname, and the second argument 
“Joyner” with the second parameter lastname. It then creates its own class variable 

Figure 5.1.8
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self.firstname on line 5 and sets it equal to firstname from the parameter list, 
and then does the same for lastname on line 6. Note here that it can tell the dif-
ference between self.firstname and firstname. self.firstname tells it to go 
and check for a variable named firstname that is persistent for the instance, and if 
it doesn’t find one, create one; firstname without self preceding it is known to 
only exist within the method, so it checks the variables defined in the parameter list.

After calling that constructor, the values of firstname and lastname within 
the instance myPerson are assigned to “David” and “Joyner,” so when we print 
them on lines 12 and 13, these values still print.

Now that we’ve done this, though, can we still create an instance without these 
arguments? As shown in Figure 5.1.10, no! “Positional” arguments are mandatory 
in functions and methods, meaning that we must supply them to run the method. If 
we want to preserve the ability to skip supplying arguments, we need to make the 
parameters optional, as shown in Figure 5.1.11.

Figure 5.1.9

Figure 5.1.10

Figure 5.1.11
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In Figure 5.1.11, we’ve defined the parameters as optional by giving them 
default values in the parameter list. If a given argument isn’t supplied, the code 
assumes it should use the value from the parameter list (such as “[no first name]” 
for firstname on line 4). So, the Person instance on line 11 supplies no arguments, 
and so myPerson1’s first name is “[no first name]”. The second Person instance, 
myPerson2 on line 13, supplies firstname = "David" as an argument, and 
so the firstname parameter gets the value “David”. The third Person instance, 
myPerson3 on line 15, shows that if an argument is given where no positional 
parameter is located, the program assumes the argument is for the next param-
eter; so, even though firstname = is not included on line 15, the code nonethe-
less assumes “Vrushali” is the value for firstname since firstname is the first 
parameter in the list.

Destructors do exist in Python, but because Python does so much memory man-
agement on its own, you likely won’t need to use them until you get to much more 
advanced programs.

Getters and Setters
Interestingly as well, Python does not provide privacy options for its variables and 
methods. There is no way to bindingly mark a variable or method in a Python class 
as private, meaning that other code can always access variables directly. By conven-
tion, we often precede variables that we don’t want other classes or functions to 
access with a double underscore; however, this is only a convention, meaning that 
other classes or functions are still able to access the data. The double underscore 
simply informs them that they are not intended to access the data in this way.

Part of this is “Pythonic” style, which focuses on easy access to data. This is 
related to the ease of Python’s lists and dictionaries; other languages supply these 
as more traditional classes with tougher syntax. Generally, when you’re developing 
classes in Python, it’s alright to directly access variables. That’s a major taboo in 
some languages (like Java), but it’s accepted in Python.

That said, getters and setters have other purposes as well. Recall that part of the 
benefit of getters and setters was that they allow us to run some code whenever a 
variable is accessed or modified. That might be useful in a simple logging behavior, 
for example. To demonstrate this, let’s finally implement that BankAccount class 
we’ve been talking about.

First, Figure 5.1.12 shows the class itself. Notice a few things. First, notice 
that to create an account, we must have a name, but the balance is optional, as 
shown on lines 4 (defining the class) and 22 (creating an instance). If no balance is 

Figure 5.1.12
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supplied, the computer assumes the balance is 0.0. Notice that we say 0.0 to force 
the computer to see this as a float, not an integer.

Second, notice we’ve supplied a getter and setter on lines 9 through 15. Within 
each, we have the obvious lines return self.balance and self.balance 
= newBalance, which get and set balance respectively. Notice, however, that 
we precede these with a call to log() on lines 10 and 14 with a message. This is 
why getters and setters can still be valuable: they allow us to trace or log program 
execution.

Third, notice that when we’re calling log(), we still precede it with self.. 
self is still how we allow different parts of an instance to see other parts. To let the 
setBalance() method see the log() method, it needs to call self.log() to 
basically say, “my log() method”. Fourth, notice that we open our file in “append” 
mode inside log() on line 18. This allows us to build a log over time in the file 
without storing the log in a variable within our program. 

Down in the main code, we first create a bank account on line 22. We supply a 
name to the constructor, but no balance, so the balance is assumed to be 0. We then 
set the balance to 20.0 on line 23; we could have set it in the constructor, of course, 
but we’re demonstrating the setter and getter. Then, we print the balance on line 24, 
seeing that it has been correctly set to 20.0. If we opened Log.txt (as shown in the 
bottom right), we would see three lines:

•	 Account created!
•	 Balance changed to 20.0
•	 Balance checked at 20.0

The constructor, getter, and setter all write to Log.txt.

Encapsulating Other Functions
Note that constructors, destructors, getters, and setters are four common para-
digms for designing methods, but that certainly is not an exhaustive list of every 
type of method. We can create methods to do whatever we want. For example, in 
the BankAccount code, we likely don’t want a setBalance() method because 
we rarely say, “Regardless of the prior value of this account, set its value to this 
new number.” Instead, we say “deposit $20” or “withdraw $10”. So, these are the 
methods we would likely want to create.

In Figure 5.1.13, instead of just changing the balance manually as 
in Figure  5.1.12, we add or subtract to or from it with the deposit() and 
withdraw() methods. Of course, we could have done this anyway with a call like 

Figure 5.1.13
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myBankAccount.setBalance(myBankAccount.getBalance() + 20.0), 
but we want to write methods that are as easy to call as possible. If we know we’ll 
regularly be withdrawing from and depositing to the account, it’s better to have 
methods to take care of that.

5.  Advanced Topics in Classes in Python
We’ve talked a good bit so far about references and mutability in Python. How do 
these concepts play along with classes? The answer: they pretty much follow the 
same conventions. Immutable types are still immutable, but most types are still 
mutable. This can get a little tricky when we start dealing with combinations of the 
two, though.

Combining Classes
Let’s explore this just by trying out some different combinations of things. For this 
running example, let’s use our two classes from before, Person and Name. Let’s 
also keep things simple by accessing the variables directly instead of using getters 
and setters. First, let’s see how we can combine them in interesting ways.

In Figure 5.1.14, notice that Person has a name, eyecolor, and age. There’s 
nothing in Person that dictates that the name must be of type Name, but that’s the 
value we’re supplying it on line 16. Had we supplied the string “David Joyner” 
directly, myPerson would have been created just fine, but the code would crash on 
line 17 when we tried to access the variable firstname, which exists in Name but 
not in string.

Figure 5.1.14

Second, notice that we’re initializing the argument for name while we’re initial-
izing myPerson, all on line 16. Calling Name("David", "Joyner") returns an 
instance of Name with firstname “David” and lastname “Joyner”, which is the 
argument we want to pass into the constructor for Person. So, we can initialize 
Name right there within the constructor for Person. We also could have separately 
called myName = Name("David", "Joyner") and used myName as the argu-
ment, but since we never need myName on its own, we might as well create it inside 
Person’s constructor on line 16.

The result is an instance of Person called myPerson, which has a string for 
eyecolor (“brown”), an integer for age (30), and an instance of Name for name. 
That instance of Name has strings for its firstname (“David”) and lastname 
(“Joyner”).
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Instance Assignments
So, using the instance of Person from Figure 5.1.16, let’s see what happens if 
we assign it to another instance. What do you think happens with the code in 
Figure 5.1.15?

Figure 5.1.15

We create an instance of Person just like before on line 12. We then create 
a second Person instance, myPerson2, and set it equal to myPerson1 on line 
13. We then modify myPerson2 on line 14. Does myPerson1 also change? The 
output of line 15 shows it does! An instance of the Person class is mutable, so 
when we say myPerson2 = myPerson1, we’re really just telling them to look at 
the same data in memory. So, if myPerson2 changes something (like eyecolor), 
it’s changing it in the same place in memory that myPerson1 refers to. So, it 
changes for both.

Instances as Arguments
What happens if we pass an instance into a function? Let’s imagine we have a func-
tion called capitalizeName() on lines 12 through 14, which converts an instance 
of Name to all caps, as shown in Figure 5.1.16.

capitalizeName(myPerson.name) passes in the instance of the Name 
object into capitalizeName. Name is mutable, meaning that capitalize-
Name() is working off the same copy of myPerson.name. So, when the name’s 

Figure 5.1.16
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capitalization changes, it does change it for the original copy, as seen by the print() 
statements in lines 18 and 19.

What if, though, instead of capitalizeName(), we had capital-
izeString(), and called it separately on firstname and lastname? This is 
shown in Figure 5.1.17, and the new method is on lines 12 and 13.

Figure 5.1.17

Here, the firstname and lastname are not capitalized when printed on 
lines 18 and 19. Why? Because strings themselves are immutable, and the 
assignment operation within capitalizeString() operates on a string. So, 
capitalizeString() changes what its local copy of instring points at, 
but that local copy isn’t the same as firstname or lastname in this instance 
of Name.

So, any operations we make on mutable data types propagate out of the function; 
any operations we make on immutable types do not. If we pass an instance of a class 
into a function or method, the variables of the class could be changed; if we pass 
only the immutable variables themselves, then the variables of the class cannot be 
changed.

Making Actual Copies
So what do you do if you want to make an actual copy of an instance, such that you 
can modify it separately? Although there are more efficient ways, the basic principle 
is that you must copy at the level of the immutable data types. In other words, setting 
myPerson2 equal to myPerson1 didn’t work because it just made the two variables 
point at the same values. To actually copy the values, we need to do exactly that: 
copy the values.

Figure 5.1.18 is a good demonstration of copying the values. Instead of just 
setting myPerson2 equal to myPerson1, we create a new instance of Person, 
using the values of myPerson1 as the arguments on line 13. So, we tell myPerson2 
to point to a new instance of Person because we call Person’s constructor, and 
we populate name, eyecolor, and age with the same values as myPerson1. This 
creates a new instance in memory, as opposed to just another variable that points to 
the same instance in memory.

Since myPerson2 has its own variables for eyecolor, then when we reassign 
it on line 14, it doesn’t affect the eyecolor for myPerson1. eyecolor is a string, 
which is immutable, so when we reassign it, it doesn’t change the value in memory: 
it instead just points the variable myPerson2.eyecolor at a new value. This 
doesn’t change the value that myPerson1.eyecolor points at.
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Figure 5.1.18

Notice, though, that the same doesn’t apply to name as written here. We 
passed myPerson1.name as the argument when constructing myPerson2, but 
myPerson1.name is an instance of the Name class. An instance of the Name class is 
mutable. That means that even though myPerson1 and myPerson2 have their own 
variables called name, they’re pointing at the same value in memory. So, when we 
modify what myPerson2.name.firstname points at on line 17, it also modifies 
what myPerson1.name.firstname points at, as shown by the output of lines 18 
and 19. To make a true copy, we need to actually construct a new instance of Name 
as well, as shown in Figure 5.1.19.

Figure 5.1.19

Instead of just passing myPerson1.name as the argument to the construc-
tor creating myPerson2 on line 13, we instead are calling the constructor of 
Name as well to create a new instance of Name, too. Into that constructor, 
we pass myPerson1.name.firstname and myPerson1.name.lastname, 
which  are  strings and thus immutable. Then, when we modify myPerson2’s 
name, it does not affect myPerson1’s name, as shown by the output of lines 
19 and 20.
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6.  Polymorphism and Inheritance and Abstraction, Oh My! 
We’ve barely scratched the surface of what objects can do. There are many advanced 
concepts in designing classes, like inheritance and abstraction. We’re not going 
to get into programming these concepts in our material, but we want to quickly 
preview it so that when you see it later in your computing education, they’ll sound 
familiar. Typically, there are entire classes on object-oriented programming, and 
these concepts are a big part of that additional depth.

Abstraction
Let’s take a quick example. What is this a picture of? Most people would probably 
say: a chair, and of course, they’d be right. Some people, though, might say it’s a 
dining room chair. They’d also be right. Some people might say it’s a Harvest-style 
dining room chair. They’d also be right. On the other end of the spectrum, some 
people might say it’s a piece of furniture. They’d also be right. Some people might 
say it’s a home good. They’d also be right. And some people might say, well, it’s a 
thing. They’d also be right.

What this object “is” exists at different levels of abstraction, and we need dif-
ferent levels for different purposes. For example, it wouldn’t make much sense to 
ask: how many legs does a home good have? But it does make sense to ask: how 
many legs does a dining room chair have? Certain variables only make sense at a 
certain level of abstraction.

Or, to take another example, imagine you want to buy a Harvest-style dining 
room chair. Do you go to the Harvest-style dining room chair store? Probably not. 
You don’t even go to the chair store; you go to the furniture store. You know that’s 
the level of abstraction at which chairs are sold: they’re sold as part of general 
furniture sales. Yet, you rarely go shopping for furniture: you don’t go to the store 
thinking, “I don’t know if I want a chair or a table.” You probably know what you 
want. This is an example of different levels of abstraction at work. 

Polymorphism
Polymorphism is a characteristic of this idea of abstraction that was implicit in that 
example. Polymorphism is the ability to ask the same questions—or in software, 
run the same code—on a wide variety of different types of concepts. In the above 
example, we would likely say that chairs, tables, and beds are three different types of 
objects, and yet we can ask certain questions across them, like their price and their 
material. We can imagine a method that returns a material, and we can imagine that 
method being applicable to any kind of furniture. Then, we can imagine iterating 
over a catalog of furniture and asking, for each item, “What material is this?” Even 
though the data are different types of furniture, that one single question makes sense.

One of the most common places this happens in software is with what’s often 
called a toString() method. When we’re designing classes, one most common 
desires is to be able to print the object. What it means to “print” the object, however, 
is very different from class to class: To print a Person object, we might want to 
print the name, but to print a BankAccount object, we might want to print an 
account number. The general idea—printing an object—is the same, though. Poly-
morphism describes to the ability to write a method in each class that would allow 
drastically dissimilar objects to be accessed the same way.

Inheritance
Inheritance in abstraction is the idea that an object can “inherit” certain variables 
and methods from its “parent.” We echoed this idea with the furniture example 
above. There are certain questions that make sense to ask about any piece of furni-
ture: what color is it? What material is it made out of? How much does it weigh? 
These variables would exist for a Furniture class.

Abstraction
A principle of object-oriented 
programming that states that 
only essential information should 
be made visible to the outside 
program.

Polymorphism
The principle that a method call 
can behave differently depending 
on the arguments and object with 
which it is called.

Inheritance
A principle of object-oriented 
programming where classes can be 
created that are “subclasses” 
of other classes, inheriting all the 
variables and methods from the 
other class while supplying new 
variables, methods, or behaviors 
of these own.

270	 Chapter  5.1  Objects

20_joy8227X_ch05.1_p253–272.indd   270 02/12/16   8:06 am



However, there are questions that only make sense to ask about certain types of 
furniture. For example: mattress size. What size of mattress does a piece of furni-
ture take? That question only makes sense if the piece of furniture is a bed. So, we 
would say that “mattress size” is a variable of beds, not of all pieces of furniture. 
However, we would say that color, material, and weight are variables of all furniture. 
Or, for another example, think of chairs. Color, material, and weight make sense for 
any piece of furniture, chairs included. A variable representing whether there are 
arm rests only makes sense for chairs, though. A variable representing how many 
wheels only makes sense for office chairs. So, office chairs would have a “number 
of wheels” variable, and would inherit “has armrests” from chair, which itself would 
inherit “material”, “color”, and “weight” from furniture.

These three concepts, combined with best practices for defining classes, visu-
alizations of class relationships, and constructing complex programs using objects 
together are effectively what you would cover next in a class on object-oriented 
programming.
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Lesson Learning 
Objectives
By the end of this chapter, 
students will be able to: 

•	 Describe the purpose of 
algorithms and use Big O notation 
for measuring complexity of an 
algorithm;

•	 Examine the working of recursion 
as well as sorting and search 
algorithms.

5.2Algorithms

c h a p t e r 

1.  What Are Algorithms? 
One of the biggest strengths of computing is its ability to automatically run extremely 
complex mathematical operations very quickly. Machine learning, for example, is 
effectively the math of statistics, equipped with ultra-powerful computers that can 
perform trillions of operations. This is the “algorithms” side of computer science.

An algorithm is effectively a set of rules or calculations to be followed… 
although that could describe anything we’ve done so far. Colloquially, algorithms 
are especially complex sequences of code that transform input into output accord-
ing to some mathematically-defined requirements. They refer to segments of code 
where the computer’s benefit is its speed more than its distributability, repeatability, 
or the other benefits of programming. Or, at least, that’s how I differentiate algo-
rithms from other coding.

Famous Algorithms
Maybe the best way to define algorithms is by example. Here are some algorithms 
that affect you every day:

•	 Data Compression. Data compression is about taking very large files and com-
municating them with a fraction of the data, in a way that loses as little actual 
meaning as possible. Algorithms responsible for effective compression are used 
to run video streaming services, online multiplayer games, and more.

•	 Random Number Generation. Surprisingly, your computer is incapable of doing 
anything truly random: everything about it is deterministic. Random number 
generators are algorithms that take some variable input and use it to algorithmi-
cally replicate something resembling truly random numbers.

•	 Search Algorithms. Not search in the way we’ll discuss later in this chapter, but 
rather Internet search engines. Algorithms underlie Google’s efforts to predict 
what you’re searching for based on your keywords, relationships between web-
sites, and past users’ experiences.

Effectively all of modern computing infrastructure is built on algorithms in 
some way, from ensuring the accuracy of data that you download to predicting rates 
of certain diseases based on aggregated medical data. Algorithms are everywhere.

Algorithms and Programming Languages
What is particularly interesting about algorithms is that they generally exist sepa-
rate and apart from a particular computer implementation of them. That’s true for 
anything we’ve covered so far in some sense, but in most cases, the underlying con-
cepts were not interesting or complex without the implementation. With algorithms, 
defining the algorithm separately from the language we might use to implement it 
is still a productive goal.

For that reason—and because this is a “looking forward” chapter—we’re not 
going to get into the language-specific implementations of these algorithms. We’re 
going to stick to describing algorithms in more general terms. Every algorithm we 
discuss could be programmed in Python, Java, C++, C#, Visual Basic, Swift, Ruby, 
or whatever other programming language you choose to use.

Algorithm
Technically, a collection of 
steps that transforms input into 
output; commonly, a complex 
set of lots of steps that is only 
feasible to perform with the 
efficiency of a computer.
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2.  Complexity and Big O Notation 
In my definition of algorithms, I noted that one of the key features was complexity. 
Computing brings lots of benefits, from easy distribution of software to build-
ing dynamic multimedia experience. For algorithms, though, the most important 
benefit is the ability to perform complex operations automatically. That lets us chain 
together lots of steps to solve problems and generate results. So, a big part of what 
makes algorithms interesting is their complexity.

Complexity in Algorithms
Why is dealing with complexity one of the big benefits of computing? Let’s take an 
example. Imagine you have a roster of 500 students in a school. Your goal is to find 
David Joyner on that roster. How long does it take? Let’s measure time in terms of 
number of comparisons: you’re comparing each name to “David Joyner” to see if it 
matches. How many comparisons does it take?

If the roster is sorted alphabetically, then it likely doesn’t take long: you start 
near the middle, check if the first name you see is before or after “David Joyner”, 
and then start looking in the right direction. If it’s perfectly sorted, it takes fewer 
than 10 comparisons if you use the most efficient algorithm. If it’s not sorted, 
though, it might require up to 500 comparisons because you have to go one name at 
a time through the entire list. Usually when discussing complexity, we talk in terms 
of the worst-case scenario, also known as the “upper bound” on how long something 
could take.

10 vs. 500 is obviously a huge difference. Imagine, however, that instead of 
finding “David Joyner,” we’re trying to check the roster as a whole for duplicates. 
If they’re sorted, things become easier: duplicates would be side-by-side. Our best-
case and worst-case are the same, 500 comparisons, because we keep going until 
we’ve checked every individual item to see if it duplicates the previous item. 

However, what if the roster isn’t sorted? If the roster isn’t sorted, then we 
start with the first name, and compare it to the next 499 names. Then, we start 
with the next name, and compare it to the next 498 names. If we do the math, 
we get almost 125,000 calculations, a nearly impossible number for a person to 
do: even if they were able to do two calculations a second, it would take over 
17 hours.

The reason complexity is so important is that with inefficient algorithms, 
expanding data set sizes can have massive impacts on execution time. It would 
take 125,000 operations to perform these comparisons on a roster of 500, but what 
if the roster grew to 600? That number balloons to 180,000 operations. With 1000 
students, it would reach a half-million. Doubling the number of students quadruples 
the number of operations required.

Big O Notation
This brings us to a notion called Big O Notation. Big O is a measure of algorithmic 
complexity. In Big O, we ask: given a data set of size n, how many operations are 
required to complete this algorithm? In the example above, the answer would be

O
n2

2







 . If we go through the data set and compare all 500 names each to all 500 

other names, our complexity would be n2 (500 × 500), but we would also be perform-

ing each comparison twice; so, O
n2

2







  is the total efficiency. However, what we’re 

really interested in with Big O notation are differences of orders of magnitude, so it’s 
common to leave out the coefficients and describe this algorithm simply as having 
O(n2) complexity. In fact, the O in Big O Notation stands for the “order” of the func-
tion. It’s not interested in cutting complexity in half or doubling it; it’s interested in 
squaring it or taking the square root of it.

Complexity
The rate at which the number 
of operations requires to run an 
algorithm grows based on the 
value of the input on which it 
operates.

Big O Notation
A notation for expressing the 
worst-case efficiency of an 
algorithm in terms of the size of 
the input.
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Common Big O Values
Because of this, there are certain values that are pretty common for Big O notation. 
The first would be O(1). This stands for a constant order: the same number of opera-
tions will be performed no matter the size of the data set. For example, checking 
whether or not the first student in the roster has a last name that starts with “A” has 
complexity O(1). It doesn’t matter if there are 10 values in the data set or 10,000; it 
still only takes a constant number of operations to check. In this case, that number 
is 1, but it doesn’t have to be 1; just any constant number regardless of the size of 
the data set.

Another common complexity is simply O(n), linear order. This means that the 
number of operations required varies linearly with the number of items in the data 
set. It doesn’t have to be exactly the number of items, but that on average as the data 
set size increases, the number of operations required grows at the same rate. Check-
ing for duplicates in our sorted roster is an example of this: We always perform one 
fewer operation than the size of the roster because we compare each name to the 
next one.

The complexity for checking for duplicates in an unordered set had the com-
plexity O(n2), quadratic order. This occurs whenever we have to perform a number 
of operations for each pair of items in the dataset. When checking for duplicates in 
an unsorted roster, adding one name to the roster means adding n new comparisons 
because the new name must be checked against every existing name.

Some algorithms can grow in complexity even faster, and require O(n3) or even 
higher exponents. This would be called polynomial order. The simplest example of 
this here would be checking for triple-duplicates in an inefficient manner. Imagine 
checking every set of three students to see if all three students had the same name; 
that would have a cubic order because every student must be compared to every pair 
among the other students. Of course, in practice we would only perform these final 
comparisons if that initial pairing of students was equal, so the efficiency would be 
closer to O(n2), although the worst case would remain O(n3).

But that’s not even the worst of it! There can exist values such as O(2n), where 
the size of the data set is the exponent. This is called exponential order. It’s tough 
to even conceptualize of an algorithm with that level of complexity, but brute-force 
password-hacking is one example. To try every possible numeric password, you 
need to try 10n passwords, where n is the length of the password. For a 10-character 
password of just numbers, that’s 10 billion combinations (1010); for just letters, it’s 
141 trillion (2610).

All of these examples have focused on increasing complexity. The goal in 
algorithm design is really to decrease complexity, though. The standard example 
of that is O(log n), a logarithmic order. With that complexity, the runtime grows 
slower and slower over time. log(100) is 2, but log(10,000) is just 4; our dataset size 
increased 100x, but our runtime merely doubled. As we’ll see later, a binary search 
has a complexity of O(log n): the runtime grows very slowly relative to the growth 
of the data set.

These are just some of the common complexities we see. Other common ones 
include loglinear (O(n log n), equivalent to O(log n!)), which tends to be the optimal 
efficiency for most sorting algorithms, and factorial (O(n!)), which tends to come 
up in recursive algorithms.

3.  Recursion 
An old joke in computing is that the definition of recursion is, “see recursion”. 
To look for recursion, you must look for recursion. Really, recursion is the 
repeated application of a certain function. What distinguishes recursion is that 
the repeated application happens within the function. This happens when a func-
tion calls itself.

Constant Order, O(1)
The same number of operations 
are required regardless of the size 
of the data set.

Linear Order, O(n)
The number of operations required 
increases linearly with the size of 
the data set.

Quadratic Order, O(n2)
The number of operations required 
increases with the size of the data 
set squared.

Polynomial Order, O(n3)
The number of operations required 
increases with the size of the data 
set raised to a larger exponent.

Exponential Order, O(2n)
The number of operations required 
increases by a constant raised to 
the size of the data set.

Logarithmic Order, O(log n)
The number of operations required 
increases with the square root of 
the size of the data set.

Recursion
A programming method character-
ized by functions that, during their 
operation, call additional copies 
of themselves; see also, recursion. 
Recursion involves breaking down 
a problem into smaller instances 
recursively until each of them can 
be independently solved. Solutions 
to these smaller instances combine 
to form the solution for the 
original problem
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Simple Recursion: Factorial
The easiest way to demonstrate recursion is with a couple of examples. But since 
we’re staying away from actually showing the implementation of these algorithms 
in this book, we’ll keep them in terms of natural language—you can implement 
them in the language of your choice.

First, just in case you aren’t familiar with it, let’s define the factorial opera-
tor:  the factorial of a number is the product of that number multiplied by each 
number between it and 1. Factorial is represented by an exclamation point. So, 
4! = 4 × 3 × 2 × 1 = 24. 5! = 5 × 4 × 3 × 2 × 1 = 120. What makes factorial a 
good candidate for recursion is that a number’s factorial is equal to itself times 
the factorial of one less than the number. In other words, 5! = 5 × 4!, 4! = 4 × 3!,  
3! = 3 × 2!, and 2! = 2 × 1!. 1! = 1, so when we reach 1, we can just work our way 
back.

This is the perfect example of a recursive function: the factorial for a certain 
number calls the factorial for another number. So, let’s translate this into a high-level 
algorithm:

•	 Function factorial, given integer n:
°° If n > 1, return n × Factorial(n – 1)
°° If n = 1, return 1

Part of the definition of the factorial function is a call to the factorial function 
itself in the first bullet, but with a different number. The last bullet is called an escape 
condition: every recursive function has a branch where it returns a value instead of 
calling itself again, breaking the chain of recursive calls. So, let’s trace through how 
this calculates 5!:

1.	 5! = 5 × 4!, so it calls factorial(4)
2.	 4! = 4 × 3!, so it calls factorial(3)
3.	 3! = 3 × 2!, so it calls factorial(2)
4.	 2! = 2 × 1!, so it calls factorial(1)
5.	 1! = 1, so 1 is returned to step #4
6.	 2 × 1 = 2, so 2 is returned to step #3
7.	 3 × 2 = 6, so 6 is returned to step #2
8.	 4 × 6 = 24, so 24 is returned to step #1
9.	 5 × 24 = 120, so 120 is the result of 5!

That matches the value we got by calculating 5! manually above. Note espe-
cially the symmetry involved: the 1st call was completed by the 9th line, the 2nd call 
by the 8th line, the 3rd call by the 7th line, the 4th call by the 6th line, and the 5th call 
was self-fulfilling. This is the general nature of recursive methods: additional copies 
of the method keep getting added on top, until eventually they start to be removed. 
This is why we noted that the stack was more common than the queue in comput-
ing: it’s very common for function calls to work like this, where calls are added to 
the top until one is ready to return something, then we work back down the stack.

Of course, we could certainly implement this without recursion, such as with a 
for loop. However, there are some functions that are easier to implement recursively 
than other ways. For example, Fibonacci’s series lends itself nicely to recursion.

Intermediate Recursion: The Fibonacci Series
The Fibonacci series is a series of numbers where each number is the sum of the 
two previous numbers. It starts with 1 and 1 as the first two numbers. Then, the third 
number is the sum of the first and second numbers: 1 + 1 = 2. The fourth number 
is the sum of the second and third numbers: 1 + 2 = 3. What’s the 10th number? To 
find the 10th number, we need to know the 8th and 9th numbers; to know the 8th 
number, we need to know the 6th and 7th numbers; and so on. That’s why Fibonacci 
series lends itself to a recursive implementation.
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So what would that algorithm look like?

•	 Function Fibonacci, given integer n:
°° If n > 2, return Fibonacci(n – 1) + Fibonacci(n – 2)
°° If n < = 2, return 1

This becomes a bit hard to trace because there are two recursive calls on the first 
bullet per function call. However, the overall pattern follows that of the Factorial 
function: it keeps adding additional calls to Fibonacci, decreasing the argument by 
1 each time, until it calls it for 2 or 1. At that point, it returns 1, and the results per-
colate all the way back up to the top result.

What’s important to note about Fibonacci series as implemented here is 
that it’s highly inefficient. Why? Because every call to Fibonacci is going to be 
called twice for a single parameter. Fibonacci(5) will call Fibonacci(4) and 
Fibonacci(3), but Fibonacci(4) will also call Fibonacci(3). So, we end up 
calculating each number twice. We could resolve this by maintaining a dictionary 
calculatedNumbers of previously-calculated Fibonacci numbers.

So is recursion only useful for these super-mathematical examples? Not at all! 
It has more immediate practical applications, too.

Advanced Recursion: Directory Exploration
Imagine you’re trying to list the files on your computer (perhaps to then write a 
search function that searches for certain file names). How would we write a function 
that can do that, given all the different folders that need to be opened and browsed? 
We can do that recursively as well! Folders are made of files and folders, meaning 
that for every folder we encounter, we need to open every folder and list its files.

Here’s what that function would look like in abstract terms:

•	 Function ListFiles, given directory dir:
°° List each file in dir
°° For each folder in dir, ListFiles(folder)

Given a directory name, that function will list all the files in the directory, then call 
ListFiles() on each folder in the directory. As a result, each folder in the directory 
will then get its files listed, followed by the folders in those folders, and so on.

This also gives a little glimpse at the notions of head recursion and tail recursion. 
Here, we list the files in the current directory before making the recursive call; as a 
result, this folder’s files will be first, the first subfolder’s files will be second, the first 
subfolder’s first subfolder’s files will be third, etc. If instead we did the listing first, 
we’d find the first files listed would be the deepest subfolder in the first subfolder of 
dir, and dir’s files would only be printed once everything else had been printed.

4.  Sorting Algorithms
Finally, we’ll close out our material with two types of general algorithms, sorting 
algorithms and search algorithms. These are often used as the first exposure to 
algorithms; if you go on to take an algorithms class, these might be the first things 
you cover, or they might assume you’ve already learned this.

First, we’ll cover sorting algorithms. A sorting algorithm is an algorithm that 
takes as input a list, and produces as output a sorted version of that list. What is 
being sorted can differ; it could be numbers, strings, dates, people (sorted by age, 
for example), or anything else. The only stipulation is that the algorithm must have 
some way to judge whether one item is greater than, less than, or equal to another.

There are lots of different sorting algorithms, with different efficiencies. We’ll 
discuss them in order based on the difficulty to implement them, not the computa-
tional complexity. In order to demonstrate these, we’ll chat about sorting a list of 
10 numbers, as shown in Figure 5.2.1.

Sorting Algorithms
Algorithms that take as input a 
list, and produce as output a sorted 
version of that list. Examples 
include bubble sort, insertion sort, 
selection sort, merge sort, shell 
sort, quick sort, and heap sort.
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Bubble Sort
The easiest sort to implement is the bubble sort. In a bubble sort, we iterate through 
the list one pair at a time; if the pair is in the wrong order, we switch it. We repeat 
that process so long as a switch was needed on the previous pass; once no switches 
were needed, we stop.

Put in terms of our algorithm, bubble sort would look like this:

1.	 For each item in the list:
a.	 If this item and the next item are in the wrong order, swap them

2.	 If any swaps were necessary, repeat step #1

You can see that if we were implementing this in code, we would need a boolean 
swapOccurred that was reset to false every time we started #1, and got set to true 
whenever a swap occurs.

Let’s try this out. Figure 5.2.2 shows the results of bubble sort after each indi-
vidual passage through the list, starting before the first passage.

Figure 5.2.2

Figure 5.2.1

The first row is the list before we have attempted to sort it at all. Then, we begin 
the bubble sort. The bubble sort compares 3 and 7; these are in the correct order, so 
they aren’t swapped. Then, it compares 7 and 6; these are not in the correct order, so 
they are swapped, changing the start of the list from 3 7 6 to 3 6 7. Then, it compares 
7 to 1; these are in the wrong order, so they are also swapped. Then it compares 7 
to 9; these are in the correct order, so they are not swapped. It starts comparing 9 
to the next numbers; 9 is the largest number, so it is swapped in each subsequent 
comparison, moving 9 to the end. Thus, at the end of the first pass, we’ve moved 7 
past 6 and 1, and 9 to the end.

A swap happened on the previous pass, so the algorithm runs again from the 
top. 3 and 6 are still in the right order, but 6 and 1 are in the wrong order, so they’re 
swapped. 6 and 7 are in the right order, as are 7 and 8, but 8 and 5 are not. So, 8 and 
5 are swapped. 8 is the next-largest number in the list, so it continues to be swapped 
until it stops before 9. So, we’ve moved the 6 to after the 1, and the 8 to the end. 
A swap occurred, so the algorithm runs again.
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Notice that with every pass, the next-highest number lands at the end of the list; 
it takes 1 pass to put 9 in the right place, 2 passes to put 8 in the right place, and so 
on. As a result, smaller numbers tend to “float” to the front—notice also how with 
every row, the number 0 moves forward by one. Notice also that this took 8 runs 
to sort, but that’s because 4 was already in the right place after run #5, and 2 was 
already in place after run #6; had they been out of place, we would have needed two 
more runs. Finally, notice that the last two rows are duplicates: the algorithm repeats 
until there are no swaps. There was a swap on run #7, so it has to run one more time 
just to confirm everything is sorted.

Bubble sort is probably the easiest sort to implement, but it’s also among the 
least efficient. It operates in O(n2).

Selection Sort
In all likelihood, we’ve never actually sorted things by hand the bubble sort way. 
Imagine you were sorting the numbers 1 through 10. If you encountered 1 in the 
middle, you wouldn’t just swap it with the adjacent number; you’d move it all the 
way back to the beginning.

That’s essentially a selection sort. A selection sort goes through the list, finds 
the “lowest” (e.g., first) item, and moves that item to the beginning. It then goes 
through the list starting with the second item, finds the next-lowest item, and moves 
that item to the second spot. It repeats this for every item in the list.

Put in terms of our algorithms, selection sort would look like this:

1.	 For each spot in the list:
a.	 Check each spot from this spot to the end.
b.	 Move the lowest value found to this spot.

Of course, that simple representation belies a lot of complexity. First, we would 
need variables to track both the value and the index of the current lowest value. We 
would then need to compare each value to this current lowest value.

Let’s try this one out as well. Figure 5.2.3 shows the results of a selection sort 
after each passage; the first row (row #0) is before any sorting, row #1 is after one 

Figure 5.2.3
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passage of the algorithm, and so on. Notice that we’re finding the smallest numbers 
and moving them to the start; we could also find the largest numbers and move them 
to the end. That would still be a selection sort: selecting each value in order and 
moving it to the right position.

We start with the same unordered list on row #0. Then, starting at position 1, we 
go look for the lowest number. We find it, move it to the front, and move all the other 
numbers back one (you might also see this implemented by swapping these two numbers 
instead of moving the others). We now know the number in position 1 is correct. So, we 
repeat the algorithm, this time starting at position 2: we find the smallest number from 
position 2 to the end, and move it to position 2. We repeat for each position in the list.

Notice that there are a couple of duplicate rows here: the list is unchanged in 
runs #4 and #8. The algorithm has no way of knowing that the next number is in the 
right place until it checks, unlike bubble sort where it automatically left that number 
in its place. Thus, with selection sort, we guarantee n executions, and each execution 
involves up to n comparisons. So, like bubble sort, selection sort runs in O(n2). It’s 
very similar to our check for duplicates in our roster example; we still repeatedly 
compare every pair, but we track the lowest and move it to the beginning.

Insertion Sort
Still though, the selection sort probably isn’t the way you would sort a list. You’d 
likely use something like a hybrid of the two methods. You’d check the second 
value, and if it was lower than the first, you’d move it to the front. Then you’d check 
the third value, and you’d place it in order with the first two; if it was the lowest or 
the highest among these, you’d move it to the beginning or leave it where it is as 
with a selection sort; if it was between the first two values, though, you’d go ahead 
and move it between these two values.

In other words, for each item in the list, you’d start at the beginning, searching 
for the first value that was larger than the current item, and move it before that item. 
In that way, you’re not just finding the first value, then the second value, and so on 
as with a selection sort, but instead you’re putting each value in place one by one.

The algorithm for insertion sort would look something like this:

•	 For each unsorted value in the list:
a.	 For each sorted value earlier than the unsorted value in the list:

i.	 If the sorted value is greater than the unsorted value, move the unsorted 
value before the sorted value.

So, let’s check this one out as well. Like the others, row #0 in Figure 5.2.4 is 
before any sorting, row #1 is after one run of the algorithm, and so on.

The best way to think about insertion sort is that it has an unsorted half and a 
sorted half. With each iteration, it takes the first unsorted value and puts it in the right 
position relative to the sorted values. So, initially, the only sorted part of this list is 
the first number: 3. One number is always sorted. The algorithm then puts 7 in the 
correct place with regard to 3; after it. Now, the sorted portion of the list is 3 7. It 
then takes the first unsorted value in the list, 6. Relative to the sorted portion, 6 goes 
between 3 and 7. So, the algorithm moves 6 to the right spot, between 3 and 7, and 
the sorted portion is now 3 6 7. Then, the next unsorted value is 1. 1 is less than all 
the sorted values, so it moves it to the beginning; the sorted portion is now 1 3 6 7. 
This continues until the list is sorted.

Like selection sort, insertion sort doesn’t know when some values are already 
sorted. Notice that run s #1 and #4 don’t change anything; in run #4, the sort hadn’t 
yet put 9 in place, so it didn’t realize 9 was already in the right spot relative to the 
sorted portion. Notice also how every number stays in place until it is moved into the 
right spot; the number 2, in the second-to-last spot, isn’t moved until the second-to-
last execution. The number 4, in the last spot, isn’t moved until the last execution. 
In an insertion sort, numbers are moved in the order of their original location to the 
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correct location; in a selection sort, numbers are moved in the order of their value 
to the correct location.

Like selection and bubble sort, insertion sort still runs in O(n2): it runs once for 
each item in the list, and within each run it compares to up to every other item in the list. 
In practice, bubble sort is less efficient on average than selection sort, which is less effi-
cient than insertion sort. However, all three have the same worst-case scenario: O(n2).

Can we do better? We can!

Merge Sort
There are actually several more efficient sorting algorithms, but we’ll only talk 
about one in detail: merge sort. Merge sort is difficult to explain in text or with static 
figures, but the heart of merge sort is a recursive method, which we’ll call Merge. 
Merge takes an unsorted list of numbers and returns a sorted list. It does this by 
first splitting the incoming list into two lists, the left and the right, and sorting them 
individually using Merge. So, it first recursively breaks down the list until each list 
has only one item; a one-item list is guaranteed to be sorted.

Then, once it can guarantee that the left and right are both sorted, it repeatedly 
compares the first item from left to the first item from right. Whichever is lower 
gets added to the final sorted list. Once both left and right are empty, it returns the 
newly sorted list. That newly sorted list is then used in a previous call to Merge. So, 
if Merge is given a list with 16 items, it first sorts 8 2-item lists, then 4 4-item lists, 
then 2 8-item lists.

This algorithm looks something like this—since we’re calling Merge recur-
sively, we need to define it:

•	 Function Merge, given a List:
°° If there is only one item in List, return List.
°° Else, split List into Left and Right, and Merge() each.
°° While there are items in Left or Right, compare the first items of each and 

move the lowest to the sorted list. 
°° Then, add any remaining items to the end of the sorted list.
°° Return the sorted list.

Figure 5.2.4
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The result is an efficiency of O(n log n), significantly more efficient than bubble, 
insertion, or selection sorts. For a 1000 item list, the three earlier sorts would require 
up to a million operations; merge sort would require only 3000, making it over 
3000x more efficient.

Merge sort is tougher to visualize than the others. The other algorithms ran 
effectively the same procedure multiple times, each time resulting in a slightly 
more-sorted list. Merge sort is more of an “all or nothing” sort; there are no distinct 
runs in the same way. That said, there are separate stages. Let’s try to visualize this. 
In the Figure 5.2.5, numbers listed side-by-side are in the same list; spaces separate 
lists.

Initially, the list is broken up into ten one-item lists. A one-item list is guar-
anteed to be sorted. Then, for each pair of lists (e.g., 3 and 7, 6 and 1), merge sort 
merges the left list and the right list into one sorted list by taking the smallest values 
first. To compute the first list, it compares 3 and 7, finds 3 is smaller, and grabs 3; 
then, there are no more items in the left list, so it grabs the remaining item in the 
right list, 7. This leads to 5 sorted pairs: 37 16 89 05 24.

Then, merge sort again grabs each pair of lists and merges them. To merge 37 
and 16, it compares 3 to 1, finds 1 is smaller, and grabs 1. Then it compares 3 to 6 
(the next item in the right list), finds 3 is smaller, and grabs 3. Then it compares 7 
(the next item in the left list) and 6, finds 6 is smaller, and grabs 6. Then, there are 
no more items in the right list, so it moves the remaining item (7) from the left list 
to the sorted list, ending with 1367. It does the same thing for the next two lists, 89 
and 05, resulting in a second list of 0589.

Merge sort generally operates on two lists at a time (although implementations 
vary), so temporarily, 24 stays as a two-item list; then, the next round merges 0589 
with 24, yielding 024589. Then, merge sort merges 1367 and 024589: it first grabs 
0 from the right, then 1 from the left, then 2 from the right, then 3 from the left, then 
4 from the right, then 5 from the right, then 6 from the left, then 7 from the left, and 
finally 8 and 9 from the right since the left is now empty.

Where does merge sort get this drastic uptick in efficiency? It comes from 
merge sort’s reliance on each smaller list being sorted; because each small list is 

Figure 5.2.5
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sorted, it need not compare each item to every other item, but rather just compare 
the first items on each smaller list. If the first item in the left list is smaller than the 
first item in the right list, then we know it’s also smaller than every other item in the 
right list, even though we didn’t manually check it against every other value. That’s 
why this is so much more efficient. The O(n2) efficiency of bubble, selection, and 
insertion sorts came because all n items had to be compared to all other n items, and 
n × n = n2. With a merge sort, all n items need only be compared to a subset—log n, 
in fact—of the other items, and n × n = n log n.

There are several other sorting algorithms as well, like Shell sort, Heap 
sort, and Quick sort; these are all relatively close to the Merge sort in terms of 
efficiency.

5.  Search Algorithms 
That brings us to our final topic, search algorithms. Search algorithms take as input 
a value to try to find, and produce as output the index in a list where the value can 
be found.

Search algorithms are far more efficient than sorting algorithms; in many ways, 
sorting algorithms are just repeated search algorithms that react to the results by 
moving values around. Thus, a sorting algorithm operates like searching for each 
value in the list one by one.

We’ll only cover two search algorithms: the linear search and the binary 
search.

Linear Search
Linear search is exactly what you would do if you were searching for a name on 
an unsorted list: you’d check the names one by one, and when you found the right 
one, you’d stop. If you were looking for more than one instance, you’d search the 
entire list, writing down all the places the name was found. Figure 5.2.6 visual-
izes this.

This algorithm would look pretty simple. If we only wanted to find one value, 
we’d simply say, “for each value in the list, if it matches the search value, return 

Search Algorithms
Algorithms that take as input a list 
and a value for which to search, 
and produce as output the index 
or indices where that value was 
found in the list.

Figure 5.2.6
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its index.” If we wanted to find all the instances, we’d say, “for each value in the list, 
if it matches the search value, add its index to a list; then, return the list”.

Either way, this runs in O(n) time: we check each value at least once. The benefit 
is that this works whether the list is sorted or unsorted.

Binary Search
A binary search, on the other hand, works only if the list is sorted. A binary search 
is a recursive method that looks like this:

•	 Function BinarySearch, given List and value:
°° If the middle value of List is value, return the index of the middle value.
°° If the middle value of List is greater than value, BinarySearch the left 

side of List with value.
°° If the middle value of List is less than value, BinarySearch the right 

side of List with value.

That’s not quite as complicated as it sounds. Think of it in terms of a number-
guessing game. I say, “I’m thinking of a number between 1 and 100.” You guess 50. 
I say, “Higher.” Now, you’ve cut the possible answers in half. Instead of 1 to 100, 
it’s now 51 to 100. So, you guess 75. I say “Lower.” Now the search space is 51 to 
74. You guess 63, I say “Higher”; the search space is now 64 to 74. You guess 69, I 
say “Lower”; now it’s 64 to 68. You guess 66, I say “Higher”; now it’s 67 or 68. You 
guess 68, I say “Lower”; now you know it’s 67. Figure 5.2.7 visualizes a similar 
binary search with a sorted but non-sequential list of numbers.

It took you 7 guesses to get the right number. What’s more, if I doubled the 
number of items to 200, it would only take you one extra guess; your first guess 
would be 100, which would cut the search space to either 1 to 99 or 101 to 200, the 
same size as the previous example.

Indeed, the efficiency of a binary search is far higher; it runs in O(log n). 
Doubling the number of items only requires one additional operation. It took up to 
7 operations to find 1 number in 100, but it would take only up to 17 operations if 
you were finding a number between 1 and 100,000. Between 1 and a billion would 
take only 30 operations max!

Figure 5.2.7
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Linear Search vs. Merge Sort + Binary Search
The drawback of binary search, of course, is that the list must be sorted. Is it worth 
sorting the list just to allow us to do a binary search? Let’s find out.

The efficiency of a linear search is simply O(n). The efficiency of merge sort 
is O(n log n), and the efficiency of binary search is O(log n); thus, the efficiency of 
merge sort and binary search together is O(log n + n log n), or O((n + 1)log n). Binary 
search is so efficient that it’s barely a blip compared to merge sort. So, when is linear 
search more efficient, and when is merge sort + binary search more efficient?

We can see pretty clearly that actually, a linear search will always be more effi-
cient. log n > 1, so n log n > n. While the binary search is just a blip in the efficiency 
of the merge sort + binary search method, the merge sort alone is less efficient than 
the linear search alone. However, if you’re going to be searching more than once, 
that advantage disappears quickly. For a list with 100 elements, sorting will require 
around 600 operations with merge sort, but linear searching will require 100 opera-
tions per search. A binary search on 100 elements requires only 7 operations, so 
merge sort + binary search is more efficient than a linear search if more than seven 
searches will be performed.

	� �﻿   5.  Search Algorithms 	 285
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	 A-1

bool(variable)  Takes as input some variable and attempts to 
convert it to a boolean, returning the boolean value if successful or 
raising a ValueError if unsuccessful.  61

close()  A method of a variable with type file, closes the file from 
further reading or writing.  227

date.today()  After importing date from datetime, returns a date 
object representing the current date.  61

find(text, [start], [end])  A method of the string data type 
that will find the first instance of the value of text within the string 
calling the method. Optionally, also takes parameters start and end to 
mark where to search in the string.  199

float(variable)  Takes as input some variable and attempts to 
convert it to a float, returning the float if successful or raising a 
ValueError if unsuccessful.  61

input(prompt)  Takes as input some string to use as a prompt for 
user input, and returns as a string the text the user enters.  61

int(variable)  Takes as input some variable and attempts to 
convert it to an integer, returning the integer if successful or raising a 
ValueError if unsuccessful.  61

items()  A method of the dictionary type that returns all the items in 
the dictionary as (key, value) tuples.  247

keys()  A method of a dictionary type that returns a list of all the keys 
in that dictionary.  243

len()  A function that takes as input a variable with a length, such as a 
string of characters or a list of items, and returns its length.  82

open(filename)  A function that takes as input a filename and, 
optionally, a write mode (“r” for read, “w” for write, “a” for append), 
and opens the file for access.  227

print(message)  Takes as input a message as a string of characters 
and prints it to the console.  19

random.randint(min, max)  Returns a random integer greater 
than or equal to min and less than or equal to max.  130

range()  Takes as input two variables, a first number and a last number, 
and provides the list of numbers for a for loop to iterate over in a for 
loop.  125

readline()  A method of a variable of type file, reads and returns the 
next line of the file as a string.  232

split([separator])  A method of the string data type that will 
split a string up into a list of smaller strings. If a separator string is 
given, that string will be used to determine where to split; if not, the 
string will be split by spaces.  201

str(variable)  Takes as input some variable and returns a string 
representation of the variable’s value.  59

turtle.forward(distance)  Takes as input distance as a float 
and moves the turtle forward the given distance.  49, 65

turtle.penup() and turtle.pendown()  Two methods of 
the turtle library that toggle off and on, respectively, whether the turtle 
draws lines as it moves.  205

turtle.right(angle)  Takes as input an angle as a float and 
rotates the turtle the given number of degrees.  49, 65

turtle.write(message, [move], [align], [font])  A 
method of the turtle library that will write the given message on the 
canvas. If move is True, it will move the turtle along with the text. Align 
determines whether the text is left, right, or center aligned, and font is a 
three-tuple that contains the font face, size, and style.  204

type(variable)  Takes as input some variable or value directly 
and returns the type of the variable such as an integer or string of 
characters.  57

values()  A method of the dictionary type that returns a list of all the 
values of the dictionary.  243

write(text)  A method of a variable with type file, writes the text to 
the file.  227
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	 G-1

A
Abstraction  A principle of object-oriented programming that states 

that only essential information should be made visible to the outside 
program.  270

Algorithm  Technically, a collection of steps that transforms input into 
output; commonly, a complex set of lots of steps that is only feasible to 
perform with the efficiency of a computer.  273

And  An operator that acts on two boolean (true or false) values and 
evaluates to “true” if and only if both are true.  72

Arguments  Values passed into parameters during a function call. 
Essentially, these are the values assigned to the function’s dedicated 
variables (i.e., parameters).  141

Assignment Operator  An operator that takes the output of an 
expression and assigns it to a variable.  81

B
Big O Notation  A notation for expressing the worst-case efficiency of 

an algorithm in terms of the size of the input.  274
Boolean  A simple True or False value.  20
Boolean Operators  Operators like “and” and “or” that act on pairs of 

boolean (true or false) values, or that act on single boolean values, 
like “not”.  72

C
Catch  A control structure that designates what error it anticipates in a 

try block and provides the code to execute if that error arises.  156
Catching Errors  Using error handling to prevent a program from 

crashing when an error is encountered.  155
Character  A single letter, number, symbol, or special character.  189
Class  A custom data type comprised of multiple variables and/

or methods. Instances or objects are created based on the template 
provided by the class.  255

Comments  Notes from the programmer supplied in-line alongside the 
code itself, designated in a way that prevents the computer from reading 
or attempting to execute them as code.  46

Compilation Errors  Errors that occur during the computer’s read 
through of the code.  30

Compile  To translate human-readable computer code into instructions 
the computer can execute. In the programming flow, this functions as a 
check on the code the user has written to make sure it makes sense to 
the computer.  5, 21

Complexity  The rate at which the number of operations requires to 
run an algorithm grows based on the value of the input on which it 
operates.  274

Conditional Statements  Programming statements that control what 
code is executed based on certain conditions; usually of the form “if”, 
“else if”, and “else”.  97, 105

Console  An output medium for a program to show exclusively text-
based output.  7

Constant Order, O(1)  The same number of operations are required 
regardless of the size of the data set.  275

Constructor  A common type of method in writing classes that specifies 
some code to run whenever a new instance of the class is created. The 
constructor often has parameters that provide values to initialize the 
variables defined by the class.  261

Control Structures  Statements that control the flow of execution of 
the program. Or, more simply, lines of code that control when other 
lines of code run.  97

D
Data Structures  Approaches to organizing abstract data types, such 

that the data can be accessed efficiently.  175
Data Type  The type of content a variable holds, like an integer or a 

string of characters.  56
Debugging  Resolving problems in code, whether it be errors thrown 

in compilation or running or mismatches between the desired and 
observed output.  29

Destructor  A common type of method in writing classes that specifies 
how the instance of a class is to be destroyed, such as releasing its 
memory back to the computer.  261

Dictionaries  A data structure comprised of key-value pairs, where 
a key is entered into the dictionary to get out a value. Similar to 
or synonymous with Maps, Associative Arrays, HashMaps, and 
Hashtables.  176, 239

Dictionary Key  A value then, when passed into a dictionary, returns 
a corresponding value, like a word and its definition. Similar to a 
variable.  239

Dictionary Value  A value returned in response to a key in a dictionary. 
Similar to a value of a variable outside a dictionary.  239

Documentation  Collected and set-aside descriptions and instructions 
for a body of code.  46

E
Edge Case  A rare situation that requires special processing to 

handle.  128
Else-If Statement  A conditional control structure that runs a block 

of code if all preceding if-then and else-if statements have been 
false and some other conditions are met.  106

Else Statement  A conditional control structure that runs a block of 
code if all preceding if-then and else-if statements have been 
false.  105

Encapsulation  The ability to combine variables and methods into class 
definitions in object-oriented programming. It helps avoid modification 
or misuse of data by other functions or programs.  260

Error  A problem that prevents code from continuing to run if not 
handled.  21

Escape Sequence  A sequence of characters that, when 
occurring in a string, is interpreted to have a meaning beyond 
the characters themselves. The most common example is “\n”, 
which is interpreted by many languages as representing a newline 
character.  192

Event-Driven Programming  A type of programming where the 
program generally awaits and reacts to events rather than running 
code linearly.  42

Exception  An error that a program might want to anticipate and catch 
instead of outright avoiding.  99

Exception Handling  A control structure that catches certain 
anticipated errors and reacts to them accordingly.  99

Execution  Running some code and having it actually perform its 
operations.  5, 21

Exponential Order, O(2n)  The number of operations required 
increases by a constant raised to the size of the data set.  275
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F
File Input and Output  The complementary processes of saving data 

to a file and loading data from a file, generally such that the state of 
the memory of the program is the same after saving and loading have 
occurred.  176, 225

Finally  A control structure that designates some code to run after 
a try and catch structure regardless of whether or not an error 
arose.  157

Floor Division  Division that rounds the result down to the nearest 
integer.  84

For-Each Loop  A loop control structure that runs a block of code a 
predetermined number of times, where the number of times comes from 
the length of some list and the items in the list are automatically loaded 
into a variable for usage in the block of code.  126

For Loop  A loop control structure that runs a block of code a 
predetermined number of times.  123

Function  A segment of code that performs a specific task, 
sometimes taking some input and sometimes returning some 
output.  41, 98, 139

Function Body  The code that a function runs when called.  140
Function Call  A place where a function is actually used in some 

code.  139
Function Definition  A segment of code that creates a function, 

including its name, parameters, and code, to be used by other portions 
of a program.  140

Function Header  The name and list of parameters a function expects, 
provided as reference to the rest of the program to use when calling the 
function.  140

G
Getter  A common type of method in writing classes that returns the 

value of a variable contained within the class. They are commonly used 
to allow other processing to occur whenever the variable is accessed, 
like logging.  261

Global Variable  A variable whose scope is the entire program; it is 
visible within any function or method in the program.  236

Graphical User Interface  An output medium that uses more than 
just text, like forms, buttons, tabs, and more. More programs are 
graphical user interfaces.  8

H
Hexadecimal  A short-hand expression of the ones and zeroes that 

comprise computer data, comprised of 16 characters, 0 through 9 and 
A through F.  190

Homogeneity  A property of lists determining whether they can accept 
multiple types of variables. A homogenous list can only accept one type 
of variable; a non-homogenous or heterogenous list can accept multiple 
types.  207

I
If-Then Statement  A conditional control structure that runs a block of 

code only if a certain condition is true.  105
Immutable Variable  A variable whose value cannot change after it 

has been declared.  182
Increment  Repeatedly adding a constant, typically one, to a 

variable.  85
Indentation  Spaces at the beginning of a line that are used to group 

together blocks of code. All consecutive lines of code at the same level 
of indentation are in a single code block.  99

Index  A number used to access a particular element from a list-like data 
structure. Traditionally, most programming languages assign the first 
item of a list-like data structure the index 0.  175

Infinite Loop  A loop that will never end because the conditions for 
ending the loop will never be met.  130

Inheritance  A principle of object-oriented programming where classes 
can be created that are “subclasses” of other classes, inheriting all 
the variables and methods from the other class while supplying new 
variables, methods, or behaviors of these own.  270

Input  Data that is fed into a program for it to operate upon.  4
Instance  A single set of values of a particular class. Classes may be 

comprised of multiple variables; an instance is a set of values for these 
variables. The term “instance” is often used interchangeably with the 
term “object”.  256

Iterate  To repeat code a number of times. For example, if a loop runs 
for each item in a list, the loop “iterates” over the list. Each time the 
code is repeated is a single iteration.  126

Iteration  A single execution of a repeated task or block of code.  123

K
Keyword Parameters  A special kind of optional parameter to which 

the program may choose to assign an argument during a function call, 
or may ignore. Typically, keyword parameters have a default value that 
is used if it is not overridden by a function call.  150

L
Linear Order, O(n)  The number of operations required increases 

linearly with the size of the data set.  275
Line of code  A single instruction for the computer to perform.  4
Linked List  A list-like structure where the location of each item in the 

list is contained in the previous item in the list.  220
List-Like Structures  Also referred to as sequences and collections, 

a data structure that holds multiple individual values gathered together 
under one variable name, accessed via indices. Includes to lists, arrays, 
and tuples. Lists are simultaneously a type of data structure and a 
specific type in some languages.  175, 207

Lists  A data structure that holds multiple individual values gathered 
together under one variable name, accessed via indices. Similar to 
arrays and tuples.  176

Lists  A mutable form of a list-like structure in Python.  208
Logarithmic Order, O(log n)  The number of operations required 

increases with the square root of the size of the data set.  275
Logical Operators  Operators that perform logical operations, 

such as comparing relative values, checking equality, checking 
set membership, or evaluating combinations of other logical 
operators.  67

Loop  A programming control structure that executes a segment of code 
multiple times.  98, 123

Loop Control Variable  A variable whose value is the number of 
times a loop has run. It is used to check if the loop should keep running 
(e.g. if it has run as many times as it’s supposed to).  124

M
Mathematical Operators  Operators that perform mathematical 

functions, like adding numbers together or assigning values to 
variables.  67

Methods  Functions that are contained within data types.  186
Modulus  The remainder function, returns the remainder of one number 

divided by another.  81
Multi-Dimensional Lists  A list-like structure where the items in a list 

are themselves lists, such that the practical effect is a multi-dimensional 
list.  216

Mutability  Whether or not a variable can have its value changed after 
being declared.  182

Mutable Variable  A variable whose value can change after it has been 
declared.  182
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N
Nested Conditional  A conditional statement that is itself controlled 

by another conditional statement. More simply, an if-then statement 
within another if-then statement.  116

Newline Character  A Unicode character, either LF (line feed) or 
CR (carriage return), that is rendered as the beginning of a new line 
of text.  190

Not  An operator that acts on one boolean (true or false) value and 
evaluates to the opposite value (false becomes true, true becomes 
false).  72

Null  The “value” a variable has when it doesn’t actually have a 
value.  54

O
Object  An object is a custom data structure that organizes and 

encapsulates variables and methods into a single data type. It is used 
near-interchangeably with “instance.”   255

Object-Oriented Programming  A programming paradigm where 
programmers define custom data types that have custom methods 
embedded within them.  41, 255

Operators  Specific, simple functions that act on primitive data types, 
like integers and strings.  67

Or  An operator that acts on two boolean (true or false) values and 
evaluates to “true” if and only if at least one is true.  72

Output  What the computer provides in return after running some lines 
of code.  4

P
Parameter  A variable for which a function expects to receive a value 

when called, whose scope is the function’s own execution.  140
Passing by Reference  An approach for passing arguments into a 

function where the function is able to modify the variable whose value 
was getting passed, changing it for both the function and the code that 
called the function.  176

Passing by Value  An approach for passing arguments into a function 
where the function is not able to modify the variable whose value was 
getting passed, only its local parameter that accepts the argument.  176

Polymorphism  The principle that a method call can behave differently 
depending on the arguments and object with which it is called.  270

Polynomial Order, O(n3)  The number of operations required 
increases with the size of the data set raised to a larger exponent.  275

Print Debugging  A form of debugging where print statements are 
added throughout the code to check how the program is flowing.  33

Print  output some text to the console.  19
Program  An independent collection of lines of code that serves one or 

more overall functions.  4
Programming  Writing code through an iterative process of writing 

lines of code, attempting to execute them, and evaluating the results.  17

Q
Quadratic Order, O(n2)  The number of operations required increases 

with the size of the data set squared.  275
Queue  A list-like structure that follows the “First-In-First-Out” 

paradigm, where we can only access the least recently-added 
item on the list and can only access it by removing it from the list.  219

R
Recursion  A programming method characterized by functions that, 

during their operation, call additional copies of themselves; see also, 
recursion. Recursion involves breaking down a problem into smaller 

instances recursively until each of them can be independently solved. 
Solutions to these smaller instances combine to form the solution for 
the original problem.  275

Reference  An alias to a variable that already exists. Either the reference 
or the variable name can be used to access the value stored in that 
variable.  177

Relational Operators  Operators that check the relationships between 
multiple variables, such as checking if they are equal or if one is greater 
than another.  68

Return Statement  The line of code that defines what output will be 
send back at the end of a function.  140

Rubber Duck Debugging  A form of debugging where the 
programmer explains the logic, goals, and operations to an inanimate 
listener to methodically step through the code.  34

Runtime Errors  Errors that arise when trying to actually execute the 
code.  30

S
Scope Debugging  A form of debugging where print statements are 

added to check the status of the variables in the program at different 
stages to see how they are changing.  33

Scope  The portion of a program’s execution during which a variable can 
be seen and accessed.  101

Search Algorithms  Algorithms that take as input a list and a value for 
which to search, and produce as output the index or indices where that 
value was found in the list.  283

Self  A keyword in Python classes that is used to refer to the instance 
itself. It defines the scope of variables and methods that methods in the 
class can see.  257

Self-Assignment  A common programming pattern where a variable 
is assigned to the output of an expression that included the variable 
itself.  85

Self-Documenting Code  Code whose variables and functions are 
named in a way that makes it clear what their underlying content and 
operations clear to the reader.  47

Setter  A common type of method in writing classes that sets a variable 
contained within the class to a new value. They are commonly used to 
allow other processing to occur whenever the variable is changed, like 
logging.  261

Sorting Algorithms  Algorithms that take as input a list, and produce 
as output a sorted version of that list. Examples include bubble sort, 
insertion sort, selection sort, merge sort, shell sort, quick sort, and heap 
sort.  277

Stack  A list-like structure that follows the “Last-In-First-Out” 
paradigm, where we can only access the most recently-added 
item on the list and can only access it by removing it from 
the list.  219

String  A data structure that holds a list, or a string, of 
characters.  175, 189

String Concatenation  The process of putting two or more strings 
together in order to form one string made of the individual strings. For 
example, concatenating “A” with “B” would give “AB”.  193

String Slicing  The Python term for obtaining substrings from within a 
string based on character indices.  194

T
Truth Tables  Tables that map out the results of a statement in boolean 

logic (that is, using boolean operators) depending on the values of the 
individual variables.  77

Try  A control structure that sets aside a block of code in which an 
error might occur so that the computer will look for error handling 
capabilities.  156

Tuple  An immutable form of a list-like structure in Python.  208
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U
Uncaught Error  An error that is not handled by error handling code, 

and thus usually forces the program to crash.  155
Unicode  A computing industry standard that sets what hexadecimal 

codes correspond to what characters, so that text appears consistent 
across platforms.  190

V
Value  The content of some variable. The variable myAge might 

hold the value 29. The variable yourName might hold the value 
“Adelene”.  51

Variables  Alphanumeric (letters and numbers) identifiers that hold 
values, like integers, strings of characters, and dates.  51

W
While Loop  A loop control structure that runs a block of code until a 

certain logical expression is satisfied.  124

X
Xor  An operator that acts on two boolean (true or false) values and 

evaluates to “true” if and only if exactly one is true.  72

Z
Zero-Indexing  A convention in most programming languages where 

the first item of a list of items is considered the “0th” item, not the 1st 
item.  195
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Index

A
Abstraction, 270
add()function, 144
Additional operators, 81–82
addOne() function, 183
Advanced debugging methods

in-line debugging, 38
step-by-step execution, 37
variable visualization, 38

Advanced recursion, 277
Algorithms, 12

Big O notation, 274
complexity, 274
constant order, 275
data compression, 273
definition, 273
exponential order, 275
linear order, 275
logarithmic order, 275
polynomial order, 275
and programming languages, 273
quadratic order, 275
random number generation, 273
recursion, 275–277
search algorithms, 273, 283–285
sorting (see Sorting algorithms)

Alphabets, 189
And operator, 72–74, 77
Arguments, 141
Assignment operators, 81
AttributeError, 32

B
Basic mathematical operators, 82–83
Binary search, 284, 285
Boolean functions, 112, 114
Boolean operators, 45, 72–76, 112, 114–116

combining, 73
properties, 78–79

Boolean values, 20
bool() functions, 61
Bubble sort, 278–279

C
capitalize() method, 203
Characters

definition, 189
newline character, 190
Unicode, 189–190

Classes
combining classes, 266
declaring a class, 256–257
definition, 255
encapsulating methods (see Encapsulating 

methods)
instance assignments, 267
instances as arguments, 267–268
making actual copies, 268–269

close() method, 165
CodeAcademy Labs, 15

Code block comments, 47, 48
Code segments, 9, 10
CodingGround, 15
Comments, 46

code block comments, 47, 48
and documentation, 47–49
in-line comments, 47

Compilation errors, 30
Compiling, 5–6, 20–22
Complexity in algorithms, 274
Complex truth tables, 78
Computing, 10

console vs. GUI, 7–8
definition, 3
programming, 8–9 (see also Programming)

Conditional statements, 105–107.  
See also Nested conditionals

accessing variables within, 119
and control structures, 97–98
creating variables within, 120
in Python, 107–111
simplifying, 76
and turtles, 120–121

Console, 7–8
Constant order, 275
Constructors, 261–264
Control structures, 11

conditionals, 97–98
error handling (see Error handling)
exception handling, 98–99
functions (see Functions)
and indentation, 99–101
loops (see Loops)
types, 97–99

currencyAmount() function, 148–149

D
Data compression, 273
Data structures, 11–12

advanced data types, 175
definition, 175
dictionaries (see Dictionaries)
file input and output (see File input and output)
lists and list-like structures (see Lists)
methods

equivalent syntax, 187–188
vs. functions, 186
isdigit(), 187

mutability (see Mutability)
passing by reference

analogy, 177
definition, 176

passing by value
analogy, 176–177
definition, 176
in Python, 179–182

strings (see Strings)
Data types

basic, 56
importance, 56
in Python, 57–59
and variables, 43–44

date.today(), 61
Debugging

advanced, 37–38
compilation errors, 30
description, 29
print, 33
programming flow, 29–30
rubber duck, 34
runtime errors, 30–31
scope, 33–34

deposit() method, 265
Destructors, 261
Dictionaries

adding and removing, 241–242
applications, 244–245
creating and accessing, 240–241
definition, 176, 239
examples of, 246–247
keys, 239
and lists, 239–240, 245, 247–248
as objects, 248–250
vs. objects, 260
replacing conditionals with, 250–251
terminology, 240
traversing, 243
value, 239

Divide by zero errors, 31
Documentation, 46–49
Dot notation, in Python, 64–65
drawShape() function, 152
drawSnowflake() function, 153

E
Edge cases, 128
else-if statement, 106
else statement, 105
Encapsulating methods, 265–266

constructors, 261–264
definition, 260–261
destructors, 261
getters and setters, 261–262, 264–265

Equivalent syntax, 187–188
Error handling

catch block, 156–157
catching errors, 155–156
finally block, 157
and functions, 169–170
and for loops, 168–169
Python (see Python)
try block, 156
and turtles, 170–171

Errors
in conditional statement, 111
in debugging

compilation errors, 30
runtime errors, 30–31

in Python
AttributeError, 32
NameError, 31
SyntaxError, 32–33
TypeError, 31–32

Escape sequence, 192
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Event-driven programming, 42
Exception, 99
Exception handling, 98–99, 155–156
Exclusive or (Xor) operator, 72
Execution, 5–6
Exponential Circle Growth, 93–94
Exponential order, 275
Exponentiation operator, 84–85

F
Fibonacci series, 276–277
File input and output

appending, 226–227
complementary process, 225
definition, 176, 225
files and turtles

global variables, 236
load command, 236–237
save and load, preparing to, 235
save command, 236

file types, 225–226
opening and closing files, 226
reading files

loading into lists, 233–234
save and load functions, 234–235
simple file reading, 231–233

writing files
appending to files, 230–231
print() function, 230
simple file writing, 227–228
writing lists, 228–229

Find method, 199–201
First-In-First-Out (FIFO), 219, 220
float() functions, 61
Floor division operator, 84
ForLoopsforDrawingShapes.py, 136
Functional programming, 41, 42
Functions, 41, 98, 102, 139

analogy for, 142–144
and error handling, 169–170
function call, 139–142
function definition, 139–140

function body, 140
function header, 140
parameters, 140
return statement, 140

lists, 213–214, 217–218
power of, 139
in Python (see Python)
record, 222–224
save and load functions, 234–235
and turtles

shape function, 152
snowflake function, 152–153

G
getIntegerInput() function, 171
Getters and setters, 261–262, 264–265
Global variables, 236
Graphical user interfaces (GUIs), 8

H
Hexadecimal code, 190
High-level programming languages, 6.  

See also Python
Holy Cross’s Online Python Interpreter, 14
Homogeneity, in lists, 207

I
IDE. See Integrated Development Environment 

(IDE)
Ideone, 15
id() function, 184
Ifs Within Elses, 118, 119
Ifs Within Ifs, 118
if-then-else-if-else statement, 109–111
if-then-else-if statement, 106
if-then-else statement, 105, 108–109
if-then statement, 105, 107–108
Immutable variable, 182
Increment operators, 85–86, 89
Indentation

and conditionals, 99–100
nested, 100–101

Indices, 175
Infinite loops, 130–131
Inheritance, 270–271
In-line comments, 46, 47
In-line debugging, 38
Input, 4–5
input() function, 61, 171
Insertion sort, 280–281
Instances

as arguments, 267–268
assignments, 267
creating instances, 258–259
declaring a class, 256–257
definition, 256
method, 257
objects vs. dictionaries, 260
self, 257

Integrated Development Environment (IDE), 14
Intermediate recursion, 276–277
int()functions, 61
isalnum() method, 204
isalpha() method, 204
isdecimal() method, 204
isdigit() function, 114, 171
isdigit() method, 187, 204
islower() method, 204
istitle() method, 204
isupper() method, 204
items() method, 247
Iteration, 123

J
join() method, 204, 222

K
keys() method, 243
Keyword parameters

creating, 151–152
definition, 150

L
Last-In-First-Out (LIFO), 219
len() function, 82
Linear order, 275
Linear search, 283–284
Lines of code, 3, 4

efficiency and readability, 66
Linked list, 220–221
Lists, 175

definition, 176, 207

and for-each loops, 127
functions, 213–214, 217–218
linked list, 220–221
loops

iterating over 2-dimensional list, 216
iterating over list, 215

properties of, 207
in Python, 212–214
queues, 219–220
stacks, 219
synonyms, 207–208
tuples, 213, 218
and turtles

listing commands, 222
record function, 222–224

writing, 228–229
Logarithmic order, 275
Logical operators, 44–45, 67
Loops, 89, 98

definition, 123
for loop

definition, 123
iteration, 123
with known ranges, 124–125
with unknown ranges, 125–126

python (see Python)
and turtles, 135–137
while loop

definition, 124
infinite loops, 130–131
and number guessing, 130
simple, 129

lower() method, 203
Low-level programming languages, 6

M
Mathematical operators, 45–46, 67, 81–85, 

111–113
Membership operators, 113–114
Memory errors, 31
Merge sort, 281–283, 285
Method, 41, 257
Modulus operator, 81, 83
Multi-dimensional lists, 216
multiple else-if statement, 106–107
Multiple parameters, 147–148
Mutability

definition, 182
immutable data types

functions vs. local assignments, 183–184
reassigning, 182–183

immutable variable, 182
mutable variable, 182
vs. passing by reference, 182
printing memory addresses, 184–186

Mutable variable, 182, 186

N
NameError, 31
Negative indices, 197
Nested conditionals, 116–117

in flowchart, 117
in Python, 118–119

Nested indentation, 100–101
Newline character, 190
Not operator, 72, 75, 77
Null, defined, 54
Null errors, 31
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O
Object-oriented programming, 12, 41–42. See 

also Objects
algorithms (see Algorithms)
definition, 255
dictionaries as, 246

Objects
abstraction, 270
classes (see Classes)
definition, 255
dictionaries as, 248–250
inheritance, 270–271
vs. instances (see Instances)
polymorphism, 270

open() function, 163
Operators, 67

combining, 75–76
composition, 90–91
evaluation of triangle, 89–90
in Python, 91–93
and turtles, 93–94

Or operator, 72, 74, 77
Output, 4–5

P
Parameter, 146–147

definition, 140
mismatch, 148–149
multiple, 147–148

Penup and pendown, 205
Polymorphism, 270
Polynomial order, 275
pop() method, 217
Primitive data types, 57
print() command, 18
Print debugging, 33
print() function, 64, 82, 140, 150, 151, 230
print() statements, 184, 185, 241
Procedural programming, 10–11

comments, 46–47
description, 41
documentation, 46
event-driven programming, 42
functional programming, 41, 42
object-oriented programming, 41–42
in Python, 42–46
self-documenting code, 47
and turtles, 49

Programming, 10
compiling, 20–21
description, 3, 17
errors, 24
execution, 21
incorrect results, 24
languages, 6–7
lines in Python, 18–20
lines of code, 18
programming languages and algorithms, 273
with turtles

drawing a square, 26
other commands, 26–27

vocabulary
compiling and executing, 5–6
input and output, 4–5
line of code, 4
programs, 4

Programs, 4
PyCharm, 14, 22, 38

Python, 12–13
advanced functions

creating keyword parameters, 151–152
using keyword parameters, 150–151

advanced loops
keywords, 133–134
nesting in, 131–133
scope, 134–135

assigning variables, 54–56
AttributeError, 32
boolean functions, 114
boolean operators, 73–76, 114–116
classes in, 266–269
code block comments, 47, 48
comments and documentation, 47–49
conditional statements, 107–111
converting from strings, 61
converting to strings, 59–61
declaring strings in, 190

methods to, 191
special characters, 191–193

dictionaries in, 240–243, 246–250
dot notation, 64–65
else block

error handling, 162–163
and file input, 163–164

encapsulating methods, 265
constructors in, 262–264
getters and setters, 264–265

errors in, 24–25
executing code

compiling, 22
encountering errors, 21–22
Interactive Mode, 23

files and command line, 13–14
finally block, 164–165

nested try-catch-else-finally, 166–168
and uncaught errors, 165–166

for-each loops
definition, 126
iterates, 126
and lists, 127
and types, 128

function errors
parameter mismatch, 148–149
scope error, 149–150

IDE, 14
incorrect output, 25–26
incrementing and loops, 89
indentation and control structures, 99–101
in-line comments, 47
integers and floats, 91–92
interactive mode, 15
lists in, 212–214
for loop

loop control variable, 124
range(), 125
with unknown ranges, 125–126

mathematical operators, 82–85, 113
mutability in, 182–186
NameError, 31
parameter, function with, 146–148
passing by value and reference

data types, 180–181
integers, 179–180
variable assignments, 181–182

print debugging, 34–35
procedural programming, 42

data types and variables, 43–44
Hello, World, 43

logical operators, 44–45
mathematical operators, 45–46

reading files, 231–235
relational operators, 68–72, 112–113
reserved keywords, 62–64
return statement, function with, 145–146
scope, 102–103
scope debugging, 35–37
self-assignment, 86–88
self-documenting code, 48–49
set membership operators, 113–114
simple functions

function call, 145
function definition, 144–145

string concatenation, 193–194
string methods, 201–204
string operators, 92–93
string searching

find() method, 199–201
in operator, 198

string slicing
individual characters, 194–195
negative indices, 197
substrings, 195–196

SyntaxError, 32–33
try and except blocks

catching any error, 158–159
catching a specific error, 159–160
catching multiple specific errors, 160–162
try statement, 157–158

tuples in, 208–212
TypeError, 31–32
and typing, 52–53
user input, 61–62
variables in, 51–52

kinds of, 52
naming rules and conventions, 53–54

web-based IDE, 14–15
while loop

infinite loops, 130–131
and number guessing, 130
simple, 129

writing files, 227–231
PythonTutor’s Visualize tool, 15

Q
Quadratic order, 275
Queues, 219–220

R
Random number generation, 273
random. randint(min, max), 130
Reading files

loading into lists, 233–234
save and load functions, 234–235
simple file reading, 231–233

readline() method, 232, 233
read() method, 234
Record function, 222–224
Recursion, 12

definition, 275
directory exploration, 277
factorial, 276
Fibonacci series, 276–277

Reference, 177–179
Relational operators, 44–45, 67, 111–113

non-numeric equality comparisons, 68
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numeric comparisons, 68
in Python, 68–72

replace() method, 206
repl.it, 14
Reserved keywords, in Python, 62–64
Rubber duck debugging, 34
Runtime errors, 30–31

S
Scope

and control structures, 101–102
debugging, 33–37
examples, 101
in Python, 102–103

Scripting Mode, Python, 23
Search algorithms, 273

binary search, 284, 285
definition, 283
linear search, 283–285
merge sort, 285

Selection sort, 279–280
Self-assignment, 85–88
Self-documenting code, 47–49
self parameter, 257
setBalance() method, 265
Simple recursion, 276
Skulpt, 15
Sorting algorithms

bubble sort, 278–279
definition, 277
insertion sort, 280–281
merge sort, 281–283
selection sort, 279–280

sort() method, 218
split() method, 201–203
Stacks, 219
str() function, 59–61
Strings

and alphabets, 189
definition, 175, 189
in Python

declaring strings, 190–193
negative indices, 197
string concatenation, 193–194
string methods, 201–204
string searching, 197–201
string slicing, 194–196

special characters, 190
turtles and text

penup and feedback, 205
text function and newlines, 205–206

Unicode characters, 189–190
strip() method, 203, 232, 233
SyntaxError, 32–33

T
TheShapeFunction.py, 152
TheTextFunctionandNewlines.py, 206
TheTextFunction.py, 205
title() method, 203
Traversing dictionaries, 243
Truth tables, 76–79
Tuples

declaring, 208–209
definition, 208
nesting, 211–212
reading, 209–210
usefulness of, 210–211

TurnandForward.py, 120–121
TurnForwardorError.py, 121
TurtleBasics.py., 16
turtle.forward(distance), 49, 65
turtle.pendown() method, 205
turtle.penup() method, 205
turtle.right(angle), 49, 65
Turtles, 15–16

and conditional statements, 120–121
and dictionaries, 250–251
error handling, 170–171
and files

global variables, 236
load command, 236–237
save and load, preparing to, 235
save command, 236

and functions
shape function, 152
snowflake function, 152–153

and lists, 222–224
for loops for drawing shapes, 136–137
and operators, 93–94
and procedural programming, 49
and text, 204–206
while loops for repeated commands, 136

turtle.write() method, 204–205

TypeError, 31–32
type() function, 57–59

U
Uncaught error

definition, 155
finally block, 165–166

upper() method, 203, 218
User-controlled turtles, 65–66
User interface and turtles, 16

V
validatePurchase(), 98
Value, 51
values() method, 243
Variables

assigning, 54
assignments, 181–182
data types, 56
and data types, 43–44
vs. dictionaries, 239
examples of, 51
immutable, 182
with lots of data, 64–65
mutable, 182
in Python, 51–54
simple drawings with, 65
with turtles, 65–66

Visualizing Modulus, 94

W
Web-based IDE, 14–15
WhileLoopsforRepeatedCommands.py, 136
withdraw() method, 265
Writing files

appending to files, 230–231
close() method, 227
open() function, 227
print() function, 230
writing lists, 228–229

Z
Zero-indexing, 195

24_joy8227X_index.indd   4 15/12/16   2:09 pm


