
Congruency, Adaptivity, Modularity, and Personalization:
Four Experiments in Teaching Introduction to Computing

David A. Joyner
Georgia Institute of Technology

Atlanta, Georgia, USA
david.joyner@gatech.edu

ABSTRACT
In January 2017, Georgia Tech launched a new online
section of its CS1301: Introduction to Computing class. The
course, offered both as a for-credit course to on-ground
students and as an open MOOC, built on four unique design
principles: congruency, adaptivity, modularity, and
personalization. In this short paper, we describe the
background of the course, the definitions of these design
principles, and their application to the course design.

Author Keywords
Computing education, personalized learning, MOOCs.

ACM Classification Keywords
• Social and professional topics~CS1 • Applied computing~
Computer-managed instruction

INTRODUCTION
The internet is replete with places to learn computer science
and computer programming. There are dozens of open
textbooks, MOOCs, YouTube tutorials, interactive
development environments, and more. A few months ago,
Georgia Tech set about creating its own online Introduction
to Computing course, and one of our first questions was:
what is going to make this course different? The last thing
the world needs is another online computing course, but are
there needs that are not fulfilled by the courses that are
currently out there?

In researching how to address this, we uncovered several
places where a new course could distinguish itself. Some of
these are largely administrative: like many MOOCs, this
new online course is custom-built to take advantage of the
options presented by the internet, but yet we are
experimenting with offering it to on-ground residential
students. It will also ultimately be offered as a publicly-
accessible MOOC with Georgia Tech credit attached: any
“students who successfully demonstrate mastery will earn a

statement that may be recognized for credit if they later
apply and are admitted to Georgia Tech” [2].

In addition to attaching credit to the course, however, we
observed a number of experimental principles to leverage in
the development of this course. Two of these, congruency
and adaptivity, aim at creating a more complete
pedagogical experience. These principles aim to inform a
design for presenting content in multiple complementary
mediums that adapt the learning experience to the student’s
current level of ability. The other two, modularity and
personalization, inform a foundation for this course that
preserves the potential to expand in new and innovative
ways to encompass other programming languages and
domains for application.

In this paper, we present the four principles that informed
the design of this experimental Introduction to Computing
course. It is important to emphasize that this course is very
much a work in progress: it launched one week prior to this
paper’s submission deadline, and we are currently gathering
enormous quantities of data to establish the usefulness and
success of these principles and this course as a whole.

COURSE BACKGROUND
This Georgia Tech Introduction to Computing course is an
online version of the school’s foundational CS1301 course,
which has no prerequisites for prior computing experience.
Its designer and instructor (and this paper’s author) is an
award-winning instructor in Georgia Tech’s online Master
of Science in Computer Science (OMSCS) program, having
taught and conducted research in it for two years [4]. The
course features four primary technological components: the
video course on edX, an adaptive textbook (authored by the
instructor and built with McGraw-Hill Education), an
automated evaluator for code (provided by Vocareum), and
a digital proctoring service (Proctortrack, from Verificient).

The edX course is the central home of the course. The
course is organized on the edX platform into nineteen
chapters, each with an average of seven lessons. Each
lesson is comprised of a handful of short videos (1 to 5
minutes), between which are interspersed interactive
exercises (multiple choice and fill-in-the-blank). These
exercises are graded for completion, and students have
unlimited attempts to achieve the right answer; every wrong
answer has dedicated feedback associated with it. Each
chapter concludes with an additional page of suggested
resources for further reading. The majority of chapters also

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
L@S 2017, April 20 - 21, 2017, Cambridge, MA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4450-0/17/04…$15.00
DOI: http://dx.doi.org/10.1145/3051457.3054011

have an associated problem set, where students complete
additional exercises but with a more limited number of
chances per exercise (typically two). All of these are
immediately and automatically evaluated.

Figure 1: An example of a simple Vocareum coding widget.
Here, the code window is on the left, and the window on the
right shows the results of the student’s submission. Students

may also run the code on the left directly.

In addition to these multiple choice and fill-in-the-blank
exercises, there are also programming exercises
interspersed between the videos. These programming
exercises all come with an embedded in-browser
lightweight development environment, allowing students to
write and run code directly in their browser. These
exercises can be run against an instant auto-grader, which
tests the code against a number of test cases and returns the
result. These programming exercises are both interspersed
in the chapters and included in the problem sets, with
unlimited submissions in both locations. Additionally, each
lesson concludes with a sandbox development environment
featuring all the code shown in the lesson to allow students
to easily jump in and experiment with the code featured in
the videos. Exams are digitally proctored by Verificient’s
Proctortrack, but are comprised of the same kinds of
exercises seen in the main course material, including
multiple choice, fill-in-the-blank, and programming.

Figure 2: An example exercise from the adaptive textbook.

In parallel to this course is an adaptive textbook written by
the course instructor and published on McGraw-Hill
Education’s SmartBook platform. As part of this
SmartBook, McGraw-Hill Education has authored over a
thousand exercises. Students complete these exercises as
part of their completion of the edX course material. The
next section contains significantly more information about
the adaptive textbook, and an example exercise is shown in
Figure 2.

Thus, a student’s experience in the course is that each week,
they complete one or two chapters and a problem set. In
completing the chapters, they watch a series of short videos,
most of which have exercises (multiple choice, fill-in-the-
blank, or programming) interspersed at a rate of
approximately an exercise per three minutes of video, and
complete a series of exercises provided by the SmartBook.
In completing the problem sets and exams, they complete
similar sets of multiple choice, fill-in-the-blank, and
programming exercises, with the added constraints of fewer
attempts or digital proctoring.

CONGRUENCY
The first guiding principle behind the design of our
Introduction to Computing course we dub “congruency”.
Congruency refers to a congruent structure between
multiple presentations of the same course material. The
principle of congruency comes from a lesson learned in
Georgia Tech’s OMSCS program. The program is built
around several video-centric MOOCs, and students have
repeatedly reported that while the production values and
instruction in the videos are excellent, videos themselves
are difficult to study. Searching, perusal, and rapid
repetition are all unnatural interactions to have with a video
compared to a textbook. To resolve this inadequacy,
students have reflected on the value of transcripts, and a
couple classes have gone so far as to share the course
scripts or transcripts in a more textbook-like format that
students can use to more easily seek the target material.

In many ways, this observation is consistent with a
residential experience. Instructors assign class readings that
overlap with lecture material because it allows the same
material to be presented in two different ways. However,
oftentimes mentally mapping the lecture material to the
reading material requires expert-level knowledge in the first
place.

This is where our principle of congruency comes in. As
noted, the course is made of two primary sources of
material: a video-based course on edX and an adaptive
textbook on McGraw-Hill’s SmartBook platform. These
two sources of material, however, are congruent in their
content, structure, and examples. They organize the content
in the same way, use the same examples, and show the
same visuals. Each chapter of the course contains a
dedicated widget to launch the corresponding chapter of the
SmartBook.

The goal is to facilitate easy alteration in the medium from
which students choose to consume content. We hypothesize
that students will generally choose to initially consume the
material from the video-based course, but will use the
textbook to recap the material later, take a deeper dive into
some of the course material, and more slowly move through
material they find confusing.

Complete data is recorded on students’ interaction with
both the video course and the adaptive textbook. This data

will be used to create profiles of students’ interaction
patterns and connect those patterns with learning outcomes.

ADAPTIVITY
Adaptivity is not a particularly new idea in computer-
assisted instruction; the general area of intelligent tutoring
systems has built on computer-aided adaptivity for decades
[e.g. 1, 6], and efforts are already under way to extend such
features to online education [e.g. 3]. However, most similar
efforts focus on adaptivity specifically within a practice
environment with dedicated feedback. This experiment in
teaching Introduction to Computing aims to instead
integrate adaptivity into the instructional process.

This is achieved in two ways. First, as noted, the course and
adaptive textbook are tightly integrated, and the adaptivity
in the textbook comes from a collection of several dozen
exercises for each chapter. These exercises are each tied to
a learning objective present in the textbook, and as students
complete these exercises, the platform constructs a model
of students’ mastery of those learning objectives. When
students answer incorrectly to a particular exercise, they
receive feedback from the textbook on the correct answer;
however, they will then later be re-tested on the same
learning objective using a different question to ensure they
are developing their understanding of the material rather
than simply recalling answers they have already seen.

Students’ experiences within the textbook then change
based on their current level of mastery of the objectives as
communicated via the exercises. If a student continues to
struggle with a certain learning objective’s exercises, the
textbook directs the student to the area of the book that
covers that material. The congruency described previously
also allows students to then jump to the identical
corresponding area in the course videos, which are also
launched from within the textbook. Additionally, whenever
a student peruses the textbook, the adaptive platform
applies a visualization on top of the text calling students’
attention to the areas in which they have already
demonstrated mastery in the exercises, as well as the areas
in which they have struggled or not yet demonstrated
mastery. In this way, the textbook experience adapts to
students’ current level of ability.

Similarly, the exercises integrated into the edX course
facilitate some adaptivity as well. Each exercise is
constructed with dedicated feedback on anticipated wrong
answers. While this boils down to a straightforward
mapping between answers and feedback in multiple-choice
and fill-in-the-blank questions, the programming exercises
allow additional adaptivity. Each programming exercise is
itself evaluated by a Python script that can examine both the
output of students’ code and the code itself, allowing a
complex tutoring system to be built that evaluates code
style, efficiency, and function, along with providing
dedicated feedback based on anticipated incorrect answers.
In its initial incarnation, the feedback supplied by this
system is largely implicit (such as providing students

desired output to compare to their code’s actual output), but
as a library of past student answers and mistakes accrues,
detailed feedback will be developed based on the most
common patterns of errors.

MODULARITY
The third guiding principle of the course’s design is
potentially controversial. Modularity in this context refers
to a modularity between three general topic areas in
computer science: foundational concepts, language fluency,
and domain applications. Each video of the course falls into
one of the three categories. Foundational lessons do not use
any particular language’s code; they focus on more abstract
concepts. Language lessons then take those concepts and
concretize them in code with actual syntax and execution.
Domain lessons then take those principles (and sometimes
that language) and apply them to a particular application
domain, like computer graphics, data science, or robotics.

There have been unsuccessful efforts in the past that
attempted to teach foundational concepts separate from
instructing their application in a particular language. These
have been unsuccessful due to the observation that
understanding of core concepts is tightly tied initially to the
syntax in which they are written; higher-level
understanding comes with practice with that syntax, not
from learning the concept prior to that syntax. We
hypothesize, however, that our effort will be more
successful because of a specific affordance of the online
medium: whereas some efforts have split foundational
concepts and language fluency into long, entirely different
lectures, we instead rapidly switch between them. Five
minutes of foundational material will be followed by five
minutes of implementation of those concepts in a particular
language before switching back to foundational concepts.
We posit that this mirrors the way the subject matter is
actually taught, and the online medium simply affords us
the ability to concretely but rapidly switch back and forth
between areas.

There are two goals of this modularity. First, it aims to
equip students with an understanding of the fundamentals
of computer science in addition to fluency with a particular
programming language. Second, while we believe that this
modularity will present a valuable way of learning
computer science on its own, modularity is also a means to
an end. Specifically, the plans for the course’s
personalization are derived from this modularity.

PERSONALIZATION
In its initial state, the course teaches Introduction to
Computing in Python with computer graphics as its domain
of application. However, the modular design of the course
is with a strong eye toward individualization. Modularity in
this sense is intended to allow for easy substitutions within
the different areas of the course such that an experience
may be constructed that is personalized to the learner’s own
interests.

In the near-term, the major application of this is expected to
be in the domain material. The initial deployment of the
course emphasizes computer graphics as its domain, but the
advantage of the online environment is its potential to
create an experience that allows students to choose their
own learning path. Toward this end, additional domain
modules are planned focusing on other topics, including
robotics, data science, and artificial intelligence. Given that
the class is often taken by students majoring in topics like
engineering, science, business, and arts, additional modules
are planned that focus on those topics. The hope is that
while the course launches as an “Introduction to
Computing”, these domain options will allow for
dynamically personalized courses like “Introduction to
Computing for Accountants” and “Introduction to
Computing for Musicians.”

A second phase of personalization comes from the
modularity of the language component. By separating out
the foundational concepts from the language component of
the course, the entire course could be redeployed in a
different language by replacing only ~50% of the content
rather than 100%, and much of that content demands only a
syntax translation rather than a wholesale rewrite.
Comparable Introduction to Computing classes are often
taught in Java, Matlab, and C++, and ongoing trends
suggest there may arise a demand for Introduction to
Computing in Swift, Ruby, or JavaScript. Domain material
could complement those as well, especially with popular
JavaScript frameworks. Thus, with far less work than
creating an all-new course, this Introduction to Computing
could become “Introduction to Computing for Engineers in
Matlab” or “Introduction to Computing for Graphic
Designers in Swift.”

Finally, an ideal third phase of personalization may come
from the options to select instructors and spoken languages.
To increase inclusivity, this drive for personalization may
allow students to select an instructor based on the desired
gender and race from which they would like to learn. This
approach will allow us to showcase the diversity of
individuals finding success in the computing field, thus
letting students select an instructor who will most
personally resonate with them [5]. Similarly, by translating
the course into other languages, we hope to extend its
availability to students around the world.

CONCLUSION: TO BE CONTINUED…
This Introduction to Computing course is an experiment in
a number of different ways. First, the four principles
outlined here that have guided the structure of the course
are themselves experiments. We may discover that students
do not leverage the congruency between presentation styles
at all, or that the modularity confuses students more than it
supports them.

The course represents an experiment in other ways as well.
At the most general level, it is an experiment to see if an
online course can succeed for a residential audience. It is

similarly an experiment to see if the principles and
expertise cultivated in a Master’s program with at-a-
distance students translate to an undergraduate program
with residential students. Other experiments include
whether or not access to a live development environment
during test-taking enhances learning outcomes and whether
or not an online course draws a different type of student
compared to residential classes even from the same student
body. Every element of this course is set up to learn,
improve, and iterate through experiments like these.

ACKNOWLEDGMENTS
We are grateful to our partners in developing this course:
Georgia Tech’s College of Computing (especially but not
limited to Zvi Galil, Charles Isbell, Melinda McDaniel, and
Bill Leahy), Georgia Tech’s Center for 21st Century
Universities (especially but not limited to Pam Buffington,
Jo Keith, Rob Kadel, Amanda Madden, and Rich DeMillo),
Georgia Tech Professional Education (especially but not
limited to Yakut Gazi, Shabana Figueroa, Brian Wilson,
Stephen Murphy, Brian Armstrong, Aqueelah Sabir, and
Nelson Baker), McGraw-Hill Education (especially but not
limited to Tom Hinkley, Cal Alford, Jenny Bartell, Amber
Cortez, Stephanie Wilson, and David Levin), edX, and
Vocareum. We are also grateful to the teaching assistants
authoring some content and helping run the first offering of
the class: Marguerite Murrell, Joshua Diaddigo, and Jackie
Elliott, Rachel Golding, and Christine Feng.

REFERENCES
1. Anderson, J. R., Boyle, C. F., & Reiser, B. J. (1985).

Intelligent tutoring systems. Science, 228(4698), 456-
462.

2. Georgia Tech. (2016). Taking Undergraduate
Computer Science Online. Retrieved from
http://www.cc.gatech.edu/news/583367/taking-
undergraduate-computer-science-online

3. Heffernan, N. T., & Heffernan, C. L. (2014). The
ASSISTments ecosystem: building a platform that
brings scientists and teachers together for minimally
invasive research on human learning and teaching.
International Journal of Artificial Intelligence in
Education, 24(4), 470-497.

4. Joyner, D. A., Goel, A. K., & Isbell, C. (2016, April).
The Unexpected Pedagogical Benefits of Making
Higher Education Accessible. In Proceedings of the
Third (2016) ACM Conference on Learning @ Scale
(pp. 117-120). ACM.

5. Kizilcec, R. F., Saltarelli, A. J., Reich, J., & Cohen, G.
L. (2017). Closing global achievement gaps in
MOOCs. Science, 355(6322), 251-252.

6. VanLehn, K. (2011). The relative effectiveness of
human tutoring, intelligent tutoring systems, and other
tutoring systems. Educational Psychologist, 46(4),
197-221.

