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03-06 Q-Learning 

Compiled by Shipra De, Fall 2016 

Overview 
 

 

- This lesson is about Q-learning.  Recall that Q-learning is a model-free approach, meaning that it 

does not know  about or use models of the transitions T or the rewards R.   

- Instead, Q-learning builds a table of utility values  as the agent interacts with the world.  These 

Q-values can be used at each step to select the best action  based on what it has learned so far.   

- The fantastic thing about Q-learning  is that it is guaranteed to provide an optimal policy.  There 

is a hitch, however, that we'll cover later.    
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What is Q? 
 

 

- Q learning is named after the Q function.  What is that?  Well, let's dig in and find out.  Q can be 

written as a function, so we might have parentheses around s and  a, or you can think of it as a 

table.   

- So in this class we're going to view Q as a table.  And it's got two dimensions, s and a.  So s is the 

state that we're looking at, and a is the action we might take.  Q represents the value of taking 

action  a in state s, and there's two components to that.  The two components are the 

immediate reward that you get for  taking action a in state s, plus the discounted reward.   

- And what that is about, what the discounted reward is about,  is the reward you get for future 

actions.  So an important thing to know is that Q is not greedy,  in the sense that it just 

represents the reward you get for acting now.  It also represents the reward you get for acting in 

the future.   

- Let's suppose we have Q already created for us.  We have this table.  How can we use it to figure 

out what to do?  So what we do in any particular state is the policy.  And we represent the policy 

with pi.   

- So pi of s means, what is the action we take when we are in state s,  or what is the policy for 

state s?  And we take advantage of our Q table to figure that out.  Here's how it works.   

- We're in state s and we want to find out which action is the best.  Well, all we need to do is look 

across all the potential actions and  find out which value of (Q [s,a]) is maximized.  So we don't 

change s, we just step through each value of a, and  the one that is the largest is the action we 

should take.   

- And the mathematical way to represent this is to use the function argmax,  so argmax of a of 

this function.  So what that does is it finds the a that maximizes this, and  then the answer is a.   

- After we run Q learning for long enough,  we will eventually converge to the optimal policy.  And 

we represent that with a little star.  So the optimal policy is pi star of s.  [COUGH] And similarly 

the optimal Q table is Q star [s, a].  Now this is how to use a Q table if you have it.   

- We need now to consider how do we build that Q table in the first place.     
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Learning Procedure 
 

 

- Here's the big picture at a high level of how we train a q learner.  We have our data here and we 

select which data we want to train on,  of course this data in the case of the stock market is time 

series.  And so it's arranged from oldest to newest vertically here.   

 

- So we select the day we want to train on.  And then we iterate over this data over time.  So we 

evaluate the situation there and for  a particular stock that gives us s our state.   

- We consult our policy and that gives us an action.  So we take that action, plug it into our system 

here,  evaluate the next state, and we get our s prime and our reward.   

- So after one iteration here we've got an s, an action, an s prime, and an r.  Or an experience 

tuple, and we use that experience tuple to update our Q table.   

- Once we get all the way through the training data, we test our policy and  we see how well it 

performs in a back test.  
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- If it's converged or it's not getting any better, then we say we're done.  If not, we repeat this 

whole process all the way through the training data.   

- So what do we mean by converge?  Well, each time we cycle through the data training our Q 

table and  then testing back across that same data, we get some performance.  And we expect 

that each time we complete an iteration here,  our performance is going to get better and 

better.   

 

- But after a point it finally stops getting better and it converges.  So overall the chart's going to 

look something like this.  Eventually we reach this regime where more iterations doesn't  make 

it better and we call it converged at that point.   
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- Let's consider now in more detail what happens here when  we're iterating over the data.  So 

here are the details as we iterate over our training data.  We start by setting our start time,  

which is right here at the beginning and we initialize our Q table.   

- The usual way to initialize a Q table is with small random numbers,  but variations of that are 

fine.   

- Now we're here in time and we observe the features of our stock or  stocks and from those build 

up together our state s.  We consult our policy, or  in other words we consult Q to find the best 

action in the current state.  That gives us a.   

- Then we step forward and we see what reward we get and what's our new state.  We now have 

a complete experience tuple that we can use to update our Q table.   

- So we take this information that we just learned and  we improve Q based on that information.  

Then we step to the next point in time and  the next point time and the next, next one time and 

so on.  So these are all the details of what happens in this step of the big picture.    
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Update Rule 
 

 

- Consider our robot here that's interacting with the world.  The first thing it sees is some state, 

and as we've talked about already,  the thing to do now is to take that state, go look in the Q 

table and  find the action that corresponds to the maximum Q value.  And then take that action.   

 

- Once that action is taken, that results in two new things.  One is a new state, we call that S 

prime, and a reward.  All that information comes into the robot, and  it needs to use that 

information to update its Q table.   

- So as a consequence of this interaction with the world, it's got an s,  an a, an s prime, and an r.  

How does it take that information to improve this Q table?   

 

- There are two main parts to the update rule.  The first is, what is the old value that we used to 

have?  And that's Q [s, a].  And what is our improved estimate?   

- And we want to blend them together.  And to combine them, we introduce this new variable, 

alpha.   
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- Alpha is the learning rate.  Alpha can take on any value from 0 to 1.  Usually, we use about 0.2.  

And what that means is, in our new improved version of Q,  which I indicate over here as Q 

prime, it's a blend of alpha  times the improved estimate, plus 1 minus alpha of the old value.   

- So larger values of alpha cause us to learn more quickly,  lower values of alpha cause the 

learning to be more slow.  So a low value of alpha, for instance, means that in this update rule,  

the previous value for Q of sa is more strongly preserved.   

 

- So stretching it out a little bit more detail.  Again we have here, our current value for the Q at 

s,a,  plus alpha times the immediate reward, plus gamma times later rewards.  Now we're 

introducing gamma here, so I promise there's only two new parameters  here that you have to 

worry about.   

- What gamma is, is the discount rate.  And similar to alpha, gamma usually ranges from 0 to 1.  A 

low value of gamma means that we value later rewards less.  Remember the discount rate when 

we were talking about bonds?  Same thing.   

- A low value of gamma equates to essentially a high discount rate.  The high value of gamma, in 

other words a gamma near 1,  means that we value later rewards very significantly.  If we were 

to use 1.0, that means a reward 20 steps in the future  is worth just as much as a reward right 

now.  Now, we have to expand this component here in a little bit more detail.   
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- This next part here is a little bit tricky, but don't worry,  we're going to step through it step by 

step.   

- This component represents our future discounted rewards.  In other words, we end up in state s 

prime, and from then on out,  we're going to act optimally, or at least, the best that we know 

how to.   

- And the question is, what is the value of those future  rewards if we reach state S prime and we 

act appropriately?  Well, it is simply that Q value, but we have to find out what the action  is that 

we would have taken, so that we can reference the Q table properly.   

- So, If we're in state s prime, the action that  we would take that would maximize our future 

reward is argmax a prime,  so a prime is the next action that we're going to take with regard to 

Q, s prime, a prime.   

- So we're going to find that best a prime,  that best action, that maximizes the value when we're 

in that state.  So this collapses just to a prime, and  then we look up the Q table value for Q s 

prime, a prime.  So that allows us to bring it all together now.   

- So our update rule is the following.  Our new Q value in state s, action a is that  old value 

multiplied by 1 minus alpha.  So depending on how large alpha is, we valued that old value more 

or  less, plus alpha times our new best estimate.  And our new best estimate is, again, our 

immediate reward,  plus the discounted reward for all of our future actions.   

- And that's it.  This is the equation you need to know to implement Q learning.     
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Update Rule – Notes 
 

 

The formula for computing Q for any state-action pair <s, a>, given an experience tuple 

 <s, a, s', r>, is: 

 
Q'[s, a] = (1 - α) · Q[s, a] + α · (r + γ · Q[s', argmaxa'(Q[s', a'])]) 

Here: 

 r = R[s, a] is the immediate reward for taking action a in state s, 
 γ ∈ [0, 1] (gamma) is the discount factor used to progressively reduce the value of future 

rewards, 
 s' is the resulting next state, 
 argmaxa'(Q[s', a']) is the action that maximizes the Q-value among all possible actions a' 

from s', and, 
 α ∈ [0, 1] (alpha) is the learning rate used to vary the weight given to new experiences 

compared with past Q-values. 
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Two Finer Points 
 

 

- There are two finer points that I wanted to mention about Q-learning.  First is that the success 

of Q-learning depends to some extent,  well, to a large extent on exploration.   

- So we need to explore as much of the state and action space as possible.  One way to 

accomplish this is with randomness.  And the way we can interject that fairly easily in the step of 

Q-learning,  where we are selecting an action, we flip a coin and  randomly decide if we're going 

to randomly choose an action.   

- So that means really two flips of the coin.  The first is are we going to choose a random action or  

are we just going to pick the action with the highest Q value?  Then if we decide okay, we're 

going to choose an action randomly, now we need  to flip the coin again to choose which of 

those actions we're going to select.   

- Typical way to implement this is to set this probability at about  something at the beginning of 

learning.  And then over each iteration to slowly make it smaller and smaller and  smaller until 

eventually we essentially don't choose random actions at all.   

- What we gain here is when we're choosing these random actions fairly frequently  is we're 

forcing the system to explore and  try different actions in different states.  And it also causes us 

to arrive at different states that we might not  otherwise arrive at if we didn't try those random 

actions.    
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The Trading Problem: Actions 
 

 

- Okay, now that you have a basic understanding of Q learning,  let's consider how we can turn 

the stock trading problem  into a problem that Q learning can solve.  To do that we need to 

define our actions,  we need to define our state, and we also need to define our rewards.   

- Let's start here first with actions.  It's actually pretty easy.  We just have three actions, buy, sell 

or do nothing.  So let's consider how that might play out with an actual stock, and  let's suppose 

we've already trained our Q learner what to do.   

- Let's see what's likely to happen.  So usually what's going to happen most frequently is that we 

do nothing.  There will occasionally be buys and sells, but usually nothing.  Well, at least, that's 

my expectation,  we'll have to see when we create these learners what actually happens.   

- So we are evaluating the factors of the stock.  In other words, we compute, say, several 

technical indicators.  That is our state.  We consider that state and we do nothing.   

 

- So let's suppose we do nothing for  quite a long period here, but somehow or another,  after a 

little while, boom, something triggers and says we should buy.  So we buy the stock here we're 

holding it.   

- We do nothing, nothing, nothing, nothing, nothing, nothing, and  boom, our very intelligent Q 

learner says, hey now is the time to sell.  And we continue like that through the rest of our time 

series.   
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- Let's consider now what these buys and  sells, how they affect our portfolio value.  So we start 

out with whatever we've got in the bank and  there's no trading for a while.  Suddenly there's a 

buy, and  then we see an increase in our portfolio value until we hit that sell.  Then nothing.  

Again, another buy, and a sell.  Then nothing.   

- So you see this sort of stepped behavior.  Now of course, because I was drawing this and I 

wanted us to look good,  I was choosing opportunistic times to buy and sell.  Your real strategy is 

probably not going to be so  good, but ideally this is the kind of thing we'd like to see.    
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The Trading Problem: Rewards 
 

 

- Now consider rewards for our learner.  Of course it makes sense that rewards should relate in 

some  way to the returns of our strategy.   

- There are at least two approaches that we can utilize.  Short-term rewards in terms of daily 

returns or  long-term rewards that reflect the cumulative return of a trade cycle  from a buy to a 

sell, or for shorting from a sell to a buy.   

- So consider these two, daily returns, where each day we get a reward  which is equal to the 

return over the last day, or  a reward where our the reward is equal to zero, until we exit the 

position, then the cumulative return that we gained across that whole trade.   

- Which one of these do you think will result in faster conversions?    

 

- The correct answer is daily returns.  The reason is, if you choose the other one where we get no 

reward at  all until the end of a trade cycle, from a buy to a sell.  The learner has to infer from 

that final reward all the way back,  that each action in sequence there must have been 

accomplished  in the right order to get that reward.   

- If we reward a little bit each on each day, the learner is  able to learn much more quickly 

because it gets much more frequent rewards.  This by the way, is called delayed reward and  this 

is more of an immediate reward.    
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The Trading Problem: State 
 

 

- Now we come to the last thing we need to solve in order to convert our trading  problem into a 

q learning problem, and that is to define our state.  I want you to consider these factors and  let 

me know which ones you think make sense to be in this state.   

- Okay, so here are a few factors.  Look at each one and  consider whether you think they make 

sense to be in state.  And check the ones that you think do make sense.    

 

- Adjusted close is not a good factor for learning,  because you're not able to generalize over 

different price  regimes for when the stock was low to when it was high.  Also, if you're trying to 

learn a model for  several stocks at once and they each hold very different prices,  adjusted close 

doesn't serve well to help you generalize.   
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- Same thing is true for simple moving average.   

- However if you combine adjusted close and simple moving average together into  a ratio that 

makes a good factor to use in state.   

- Bollinger Band value is also good.  P/E ratio is good.   

- And a new kind of feature that we're considering here with reinforcement  learning, is whether 

we're holding the stock or not.  That's an important state to know, in other words,  if you're 

holding the stock it may be advantageous to get rid of it.  But if you're not holding it, you might 

not necessarily want to sell.  So this additional feature about what your situation is useful.   

- Similarly, return since we entered the position might be useful.  In other words, this might help 

us set exit points for  instance, maybe we've made 10% on the stock since we bought it and  we 

should take our winnings while we can.   

- So both of these are important and  good factors to have an acute learning system.    
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Creating the State 
 

 

- So an important consideration in what we're doing here  is that our state is a single number.  It's 

an integer.  That way we can address it in our Q table.  It is certainly the case that some 

reinforcement learning methods  are able to treat the state as a continuous value.  But just to 

get started here, let's use state as an integer so  we can work more easily with the data.  Now 

we have to do a little bit of work to get our state to an integer and  here is the general way to do 

it.   

- Our first step is to discretize each factor.  It's a weird word, I'll explain it in a moment.  But it 

essentially means convert that real number into an integer.   

- Next is combine all of those integers together into a single number.  We're assuming that we're 

using a discrete state space and  that means more or less that our overall state is going to be 

this one integer  that represents at once all of our factors.   

- So consider that we have four factors and each one is a real number.  Now we have separately 

beforehand  figured out how to discretize each one of these factors.  So we run each of these 

factors through their individual discretizers and  we get an integer.   

- Now I've happened to select integers between 0 and 9 but  you can have larger ranges, for 

instance 0 to 20 or 0 to 100 even.  It's easy if we just go from 0 to 9 because then we can stack  

them together into a number.  But it's not too hard to think of algorithms will enable you to 

combine  larger ranges of integers together.   

- In this case we're just able to stack them one after the other  into our overall discretized state.    
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Discretizing  
 

 

- Discretization or discretizing is an important step in this whole process.  What we want to do is 

have a way to convert  a real number into an integer across a limited scale.  In other words, we 

might have hundreds of individual values here between 0 and  25 of a real number, and  we 

want to convert that into an integer, say between 0 and 9.   

- There's a fairly easy way to do that and I'll show you how right now.  So here's what we do.  First 

thing is we determine ahead of time how many steps we're going to have.  In other words, how 

many groups do we want to be able to put the data into?  Like I said before, to have an integer 

between zero and  nine, we would use ten in this case.   

- So we divide how many data elements we have all together by the number of steps.  Then we 

sort the data, and then the thresholds just end  up being the locations for each one of these 

values.   

- So in other words, if we had, say, 100 data elements and  we were going to have 10 steps, our 

step size is 10.  So we just find the 10th data element and  that's our first threshold, and then 

our 20th and 30th and so on.   
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- It ends up looking something like this.  When the data is sort of sparse, our thresholds are set far 

apart.  When the data is not sparse, these thresholds end up being closer together.   

- So in this particular example,  our thresholds might end up looking something like this.  And 

when we go to query, when we have a new value and  we want to see what is its discretized 

value, we'll say it was a value here.  Boom, it's between those two thresholds, so it would be an 

8.    
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Q-Learning Recap 
 

 

- Okay, let's recap what we've learned about Q-Learning.  First, let's consider what it takes to 

build a model.   

- First step is define states, actions, and rewards.  So states are combinations of our features.   

- Actions are buy, sell, do nothing.   

- And rewards are some type of return.   

- Next you choose the training period and you iterate over that  training period and update your 

Q-table on each iteration.   

- When you reach the end of that training period you backtest  to see how good the model is and 

you go back and  repeat, until the model quits getting better.   

- Once it's converged you stop, you've got your model.   

- Testing the model is simple you just backtest it on later data.   

- Remember we're always training on one set of data and  then testing on later data.   

- And that's it.  I hope you enjoyed the lesson.    
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Summary 
 

Advantages 

 The main advantage of a model-free approach like Q-Learning over model-based techniques is 
that it can easily be applied to domains where all states and/or transitions are not fully defined. 

 As a result, we do not need additional data structures to store transitions T(s, a, s') or 
rewards R(s, a). 

 Also, the Q-value for any state-action pair takes into account future rewards. Thus, it encodes 
both the best possible value of a state (maxa Q(s, a)) as well as the best policy in terms of the 
action that should be taken (argmaxa Q(s, a)). 

Issues 

 The biggest challenge is that the reward (e.g. for buying a stock) often comes in the future - 
representing that properly requires look-ahead and careful weighting. 

 Another problem is that taking random actions (such as trades) just to learn a good strategy is 
not really feasible (you'll end up losing a lot of money!). 

 In the next lesson, we will discuss an algorithm that tries to address this second problem by 
simulating the effect of actions based on historical data. 
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Resources 
 

 CS7641 Machine Learning, taught by Charles Isbell and Michael Littman  
o Watch for free on Udacity (mini-course 3, lessons RL 1 - 4) 
o Watch for free on YouTube 
o Or take the course as part of the OMSCS program! 

 RL course by David Silver (videos, slides) 
 A Painless Q-Learning Tutorial 

 

https://www.udacity.com/course/viewer#%21/c-ud262/l-684808907
https://www.youtube.com/watch?v=_ocNerSvh5Y&list=PLAwxTw4SYaPnidDwo9e2c7ixIsu_pdSNp
http://www.omscs.gatech.edu/cs-7641-machine-learning/
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://mnemstudio.org/path-finding-q-learning-tutorial.htm

