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Overview 
 

 

- One problem with Q learning is that it takes many experienced tuples to  converge.  This is 

expensive in terms of interacting with the world,  because you have to take a real step,  in other 

words execute a trade, in order to gather information.   

- To address this problem, Rich Sutton invented Diana.  Diana works by building models of T, the 

transition matrix and  R the reward matrix.  Then after each real interaction with the world,  we 

hallucinate many additional interactions, usually a few hundred.  That are used then to update 

the queue table.    
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Dyna-Q Big Picture 
 

 

- Dyna-Q is an algorithm developed by Rich Sutton  intended to speed up learning or model 

convergence for Q learning.  Remember that Q learning is model free, meaning that it does not 

rely on T or R, T being our transition matrix and  R being our reward function.  It doesn't know it.  

Q learning does not know T or R.  

- Dyna ends up becoming a blend of model free and model based methods.  Here's how it works.   

- So let's first consider plain old Q learning.  Dyna is really in addition to Q learning.  So let's start 

with the regular Q learning and  then look at how we add Dyna into it.   

- So we initialize our Q table and then we begin iterating.  We observe s, we execute action a and  

then we have observe our new state s prime and our reward R  within updater our Q table with 

this experience tubal and repeat.   

- And we do that over and over and over again, interacting with the world and  our Q table 

becomes better and better.   

 

- So when we augment Q learning with Dyna-Q, e add three new components.  The first is that we  

add some logic that enables us to learn models of T and  R then for lack of a better term we 

halucinate an experience.   
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- So rather than interacting with the real world like we do appear with the Q learning part and 

this is expensive by the way.  We hallucinate these experiences, update our queue table and  

repeat this many times, maybe hundreds of times.   

- This operation is very cheap compared to interacting with the real world.  So we can leverage 

the experience we gain here  from an interaction with the real world, but then update our 

model  more completely before we step out and interact with the real world again.   

 

- After we've iterated enough times down here maybe 100 maybe 200 times.  Then we return 

back up here and resume our interaction with the real world.   

- The key thing here is that for each experience with the real world,  we have maybe 100 or 200 

updates of our model here.   

- Let's look at each of these components in a little more detail now.   
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- So in this part where we update our model.  What we really want to do is find new values for T 

and R.  The point where we update our model includes the following.  We want to update T, so 

I'm calling it T prime for the moment, which  represents our transition matrix and we want to 

update our reward function.   

- Now, remember that T is the probability that if we  are in state s and we take action a will end 

up in s prime.  And r is our expected reward if we are in state s and we take action a.  I'm going 

to show you in a moment how we'll update T and  R. 

 

- Here's how we hallucinate an experience.  First, we randomly select an s, second, we randomly 

select an a,  so our state and action are chosen totally at random.  Then we infer our new state s 

prime, by looking at T.  And we infer a reward, our immediate reward R by looking at big R or R 

table.   

- So, now we've got s, a, s prime and r.  Or a complete experience tuple and we can update our Q 

table using that.   
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- So, the Q table update is our final step and  this is really all there is to die in a queue.  We've 

added these three sections and what's missing and I'll get to in just  a moment is how do we 

update our model of t and our model of r?    
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Learning T 
 

 

- So what I'm about to show you are my methods for doing these things  they may not correspond 

exactly to what Rich Sutton did.  So keep that in mind but I've used these methods in practice 

and  found them to work really well.   

- Let's start with Learning T.  Remember T of SA S prime represents the probability  that if we are 

in state S, take action A we will end up in state S prime.  To learn a model of T.  we're just going 

to observe how these transitions occur.  So in other words we'll have experience with the real 

world we'll get back  on s, a, s prime and we'll just count how many times did it happen.   

- So I'm going to introduce a new table I call T count or TC.  And it goes like this.  So we initialize 

all of our T count values to be a very, very small number.  The reason for that is later on you'll 

see that if we don't do that we could  get in a situation where we have a divided by zero.   

- Then we begin executing Q learning.  And each time we interact with the real world we observe, 

s, a, and s prime.  And then we just increment that location in our T-count matrix.   

- So every time we see it transition from S to S prime with action a,  boom, we add a one.  And 

that's pretty, it's pretty simple.  That's it.    
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How to Evaluate T? 
 

 

- Okay, assume now we've been watching our interactions with the real world for  a while and we 

would like to consult our model of T.  I would like for you to write an expression for  T in terms 

of Tc or T count.   

- Okay, so fill in this text box with your opinion  of how we can compute T of s, a, s prime in terms 

of T sub c.  And remember T sub c is just the number of times each one of these has occurred.    

 

- Okay, consider that state s and a are somewhat fixed.  What we're trying to find is given s and a,  

what's the probability of a particular s prime?  So, we'll begin this by just consulting how many 

times  did this transition occur?  In other words, how many times when we were in state s did 

action a,  did we end up in s'?  So that's how many times this particular transition occurred.   

- Now we just need to divide it by the total number of times we were in state  s and did action a.  

So essentially, it's the sum over i.  Where we have i iterate over all the possible states of T[s, a, 

i].  So this is the number of times in total  that we were in state s and executed action a.   

- And so this ratio ends up being the probability that will end up in s'  if we're in state s and take 

action a.    
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Learning R 
 

 

- The last step here is how do we learn a model for R?  Now remember, when we execute an 

action a in state s,  we get an immediate reward, little r.  So again, big R, s,  a as are expected 

reward if we're in state s and we execute action a.  Little r is our immediate reward when we 

experience this in the real world.  So big R is our model, little r is what we get in an experience 

tuple.   

- So we want to update this model every time we have a real experience.  And it's a simple 

equation, very much like the q table update equation.  What we have is one minus alpha where 

alpha is our learning rate and  again that can typically be something like zero point two.   

- Anyways we multiply that times our current value for R and  then we add in of course our new 

estimate of what that value ought to be.  And we just use r for the new estimate.  So it's alpha 

times little r, which is our immediate reward, or  our new best estimate of what the value should 

be,  plus what the value was before times 1 minus alpha.   

- So we're waiting presumably.  Our old value more than our new value, so we converge more 

slowly.  But that's it.  That's a simple way to build a model of R  from observations of 

interactions with the real world.    
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Dyna Q Recap 
 

 

- Before we close, let's recap really quick how Dyna-Q works.  So, we start with straight, regular 

Q-Learning here and  then we add three new components.   

- The three components are, we update models of T and  R, then we hallucinate an experience 

and update our Q table.   

- Now we may repeat this many times,  in fact maybe hundreds of times, until we're happy.  

Usually, it's 1 or 200 here.   

- Once we've completed those, we then return back up to the top and  continue our interaction 

with the real world.   

- The reason Dyna-Q is useful is that these experiences with the real  world are potentially very 

expensive and these hallucinations can be very cheap.  And when we iterate doing many of 

them, we update our Q table much more quickly.    
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Summary 
 

The Dyna architecture consists of a combination of: 

 direct reinforcement learning from real experience tuples gathered by acting in an 
environment, 

 updating an internal model of the environment, and, 
 using the model to simulate experiences. 
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