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- Hi everybody.  Welcome.  Sorry for my delay in getting started.    I make some of these videos 

from my basement and I got down here to discover  some of my technology was missing 

because of a certain child of mine.  So  anyways I had to find that and plug t it all in.  Now I'm all  

ready to go.  

- Ok, I will check periodically on Piazza to see if we've got any questions.  One thing I would 

appreciate is if somebody who is a currently watching could post a question on piazza indicating 

that you can hear me.  I'm going to start  blazing forward anyways but it would be good to get 

that feedback, so thanks.  And  I'm going to check on Piazza right now.  Okay, somebody says 

they can hear.  Thank you.    

- Alright I'm going to now step through some PowerPoint slides.  Ok let's see what happens when 

I go full screen.  Give me just a moment here.  Ok.  I put together a couple of PowerPoint slides 

I'll step you through. 

 

- So if you remember the last lecture we talked about if you had a decision tree  how you might 

use it.  So in this lecture we're going to talk about,  okay, how do we build the decision tree in 

the first place? 
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- So let's pause for a  second and think about what are the things that make up a decision tree .  

And  big picture, remember here, we're trying to build a model that from some factors  or 

features or attributes, things we can measure about a system, what is going to happen later. 

- And so the factors or attributes are our X's and we might have many of them.  We might have 

up to N of these factors. 

- Now  associated with each group of factors are a label, Y.  So our data consists of the values of 

the factors and the values of the labels.  Think about it like a big matrix where the columns are 

the X's and then that last Y and the rows are  individual samples of data.  So each row might 

represent a day for the price of the stock or each row might represent a day of weather. 

- Then using that data  we build a decision tree and the decision tree consists of decision nodes.  

Each node represents a binary decision.  Now we can build decision trees that aren't necessarily 

binary.  They might have more than two outgoing edges,  but for simplicity (and actually turns 

out for efficiency) it turns out that building binary trees is the best way to go.  So we're only 

gonna have two  potential outputs of each decision node.   

- There's then the outgoing edges that  lead to additional decision nodes.  And there are two 

kinds of special nodes.  There is the root node, which I forgot to mention here, and also leaves. 

So when you  finally reach a leaf at the very end, that's the value that you're trying to predict.  

The root is the first node of the very top that you start at when you're trying to make a decision.  

- And we build these decision trees from data examples and again we have each row  in our data 

is a set of X's and a Y.   
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- Now I'm gonna double-check that you are able  to see my PowerPoint slide.  I don't want to get 

all the way through this and  discover the people aren't seeing the slides.   I'm gonna go take a 

quick check  at piazza.  People must see the PowerPoint because they're asking if they can have 

it.  And the answer is yes.  You'll be able to have it.  I'll come  back a little bit later to answer the 

other questions that are popping up.  Great, thank you very much for answering.  

 

- Ok, here's an example of a decision tree.  We've identified the root here up at the top.  So 

whenever we want to query our model to see what the value, what the predicted value, is, we 

start here at the root and each decision node asks a binary question.  Is this factor X11 less than 

or equal to 9.9?   

- If it is, yes, we go down  this left edge and we come to another question about that same factor 

X11.  And if it's less than or equal to 9.25, we go left.  If it's not we go out to the right.    

- And here we see a new factor that we're asking questions about, X2.  If it's  less than or equal to 

6.480 we go down here.  We arrive at a leaf and the value is six. 

- Now couple things I want to point out.  This is an example tree.  I'm going to  actually show you 

in a few minutes how we built this exact tree, and it's using that wine data that I introduced the 

other day. So X11, for instance, is a  percentage of alcohol.   

- I forgot what X2 is, but the thing to note here is this particular tree was only built using two 

factors.  And in some cases the same factor (well in all cases) the same factor appears multiple 

times through  the tree.  So for instance, factor 11 appears here and here. So if we go down  this 

branch we end up asking two questions about factor 11.   If we go down this  branch  again we 

end up asking two questions about factor 11.    



(c) 2016 by Tucker Balch, all rights reserved. 

- So we can repeat factors.  Sometimes not all factors are included in the tree and sometimes 

some factors  appear more than others.  It turns out that that's often related to how predictive 

the individual factors  are.   

 

- Now this is one way to view a tree.  We can also view it in a different way, in a  tabular view. 

And this data right here represents the same tree but in a tabular view and this is the way I want 

you to build your decision tree for the  next assignment.   I want you to use a NumPy array. 

- And I want you to consider these four columns.   

o The first column is, for that particular node which  factor are we considering.   

o The next column is what is the split value.  In other words, which value do we decide to 

go down the left branch or  right branch. 

o And then these two other columns tell you where in my matrix  here does the next part 

of the tree begin.  So here we're saying the left tree starts in the next row and the right 

tree starts at the eighth row.   

- Now leaves are special entries.  So if we have here in the first column an indication that it's a 

leaf, the next column split val, instead of it representing a value to split on, it represents the 
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value of the  leaf.  And it doesn't really matter what's in the left or right columns here for a leaf 

because we're not going down further. 

- One more thing I want to say.  Yes in this example we have sort of text in this column but numpy 

arrays can only be numbers.  This is just for, sort of clarity,  and so you know instead of saying 

X11 here you would put the number 11.  And instead of you know putting leaf here, you would 

put some special number that signifies to you that this is a leaf.   

 

- And again these are dual  representations.  They represent exactly the same information.  The 

root node is always the very first row in this ndarray.   
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- And then you can see  here where the left and right subtrees are.  So that's how we represent 

decision trees, or at least my recommendation on how you want to  represent for your project. 

- Now those who have sort of an object-oriented bent and want to do  things in an object-

oriented way, you can do that in Python, but let me suggest again, first do it this way.  Get it 

working, and if you want to go forward with the object-oriented approach, that's fine.  But get it 

working like this first. 

- But now  I'm going to take a quick look back to Piazza see if we have any questions and  then I'll 

go on with the presentation.  Ok people see the slides.   

- Abida asks a question.  Building binary trees is best in efficiency in terms of building the tree, 

you mean? Why is that? Why would a higher branching number be worse?  So I meant actually 

that if the tree is binary it is likely a little bit easier to process.  You know keep in mind each 

question...uh...so think about  efficiency in terms of, you know, a CPU.  If our questions are 

simple comparisons,  that's something that modern-day processors can do incredibly fast.  So if  

it's a binary tree they only have to do a single comparison at each node to  decide what to do 

next.  Now you can probably dig up some  papers that might contradict what I'm saying, so I'm 

not going to assert too strongly, but I will say they're definitely easier to build.  And it's my 

intuition that they're probably fast as well.  But, yeah, sure, maybe a higher branching factor 

could perform better.   

- The  video of the slides is too blurry to read sometimes.  Okay I understand.  I'm  going to share 

the slides and also the spreadsheet that I'm  going to use shortly.  I'll put that up on the website 

so you'll be able to see the PowerPoint as well. 
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- Somebody is enjoying porto.  It's  Patrick.  Hi Patrick.  So keep in mind everybody can see my 

screen right now, but I'm with you Pat.  I'm glad you're enjoying it.  Oh, and by the way, he's 

checking out he's doing an OPS test, ground truth, on the  upcoming problem. 

- In numbering nodes I see you're going by depth instead of breadth.  Indeed, it doesn't matter.  

Actually I'm going to get to that in a little bit and you'll see why they have the numbers that they 

do.  So ask that question again if you don't understand it or if I don't make it clear coming up. 

- Ok let me go on with my PowerPoint presentation.   

 

- Ok, here is the algorithm for building a decision tree.  This is the algorithm initially proposed by 

JR Quinlan and there's a link to this paper actually on the project wiki site if you're interested.  

It's actually a very good the paper in the sense that it's well-written,  that it's not filled with 

jargon, it's easy to understand the motivation for how  decision trees are built, and so on.  

- So I know most people in OMS are come from a computer science background, so they are 

probably familiar  with recursion.  Some of the people taking the course on campus are from 

other  disciplines, and actually hadn't necessarily seen recursion before.   

- But  this is a recursive algorithm and in other words, the algorithm or the function called 

build_tree actually calls itself and an important  consideration in any recursive algorithm is you 

have to be sure it's going to  terminate because otherwise it will call itself over and over and 

over again  going to essentially infinite depths and never stop. 

- So the very first thing that we do is a couple checks to see if we've met a  stopping criteria.     
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- By the way, I want to emphasize that this is not the final  totally complete description of how to 

build a tree.  This is kind of an outline and you're probably going to find that you need to add a 

few more details, ok? But this is this will give you a good start. 

- Anyways, the first things we check our stopping criteria.  So when this function build_tree gets 

called with data, which is the data we're going to use to build the tree.  And by the way this 

structure is an ndarray where each  column represents a factor and the very last column 

represents the label or the Y value. 

- So we take that data in and if the number of rows, in other words shape of [0] (that's the 

number of rows),  if there's only one row that means we're being  given data, essentially one 

sample of data. So if we are asked to build a tree out of one sample of data, well the answer is 

it's a leaf and the value of that leaf is the Y value of that data. 

- And I'm using the same columns here that we talked about before in our  columnar data 

structure.  The next two items that don't really matter.  So we  create a single row.  That is, 

again, we designate that it's a leaf.  The label is Y.  And  we don't care about the other two 

items. 

- So that's one stopping criteria.  Another is what if we get called with some data and all of the 

labels are the same.  Well, obviously, there's no point in creating a more detailed tree from this  

data because we know what the answer's going to be.  We know it's going to be  just Y.  So again 

we can create a leaf and return it.  So those are our stopping criteria 

- Now, if neither one of those conditions are met, then we have real  data that we can build a tree 

with. 

- So first step here is determine the best  feature to split on.  So as an example if we're getting 

called for the first time to build a tree say using the wine data, this question is essentially, what 

is that first question that we're going to use to  build our root node?   

- Now it turns out that each sub tree is formally a tree as well.  It has a root, it has leaves, it has 

directed edges, and so on.   So we can  imagine each sub tree is a tree by itself.  But the very first 

time we do this we're looking at the root node.   I'll  talk in a minute about how do we 

determine that best feature.  There's a number of different ways to do it, and it merits its own 

slide for discussing. 

- Ok, now that we know which feature we're going to use, we need to  determine what particular 

value are we going to split on.  And the standard way  to do this is to look at our data, look at 

that column i, remember that's  the feature we decided to split on, and we look across all of our 

samples, and we  take the median.  

- The median is the value that divides the data in half.  In other words, half the data is going to be 

less than the median, half the data is  going to be greater than the median.  There are special 

edge cases that you know people probably ask about. You know, what if the same value is 

repeated 10 times in the middle, you know, so you're going to have a sort of lopsided split of the 

data.  Yeah, that's true.  No big deal. 

- Okay so we know our split val.  Now we need to gather together the data we're going  to use to 

build the left side of our tree and gather together the data that we're going to use to build the 

right side of a tree, and here's how we do it. 
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- And this is showing some of the real power of Python.  So again, we're going to call  our own 

tree building function here, build_tree, and the left tree is going to  be built from the data that is 

less than or equal to the split val.  This expression is called comprehension, and you can specify, 

"okay, look through my data, find all the elements where this column is less than split val, grab 

those columns out of data, and we will use that to build our left branch."   

- Same  thing for the right side except we're using those rows that are greater  than split val.  So 

each of these, you know, will call build tree in turn.   

- So what will happen is we'll recurse down the left side of the tree, and we'll go down and 

calculate this left tree and boomp, it will return and we'll have this value, here lefttree, which is 

an ndarray.  Similarly for the right side, we'll have righttree.  So now we have two sides of our 

tree, the left tree and the right tree.   

- We still need the root and here's how we compose the root.  So first element here is what's the 

feature we're gonna split on.  We determined that's i ,right?  The next column is what's the 

value we're going to split on, that's split val.  It  turns out that in our formulation here, the left 

tree always begins at the next row.   

- And one thing I want to mention that I didn't mention when I was  talking about our data 

structure is, these left and right  columns, it turns out that it's easiest if you think about them as 

being relative.  So in other words, this is saying that the left tree begins in the next row.  So 

whatever row we are in the matrix, we're saying the left tree starts at the very next row. 

- Where is the right tree start?  Well we have to make room for our left tree.  So this is saying 

okay, we're going to make room for our left tree.  And then the next row after that is where our 

right tree begins.  Then we append  those all together.   We append our root, our left tree, and 

our right tree.  Boom.  That's our whole tree.  Ta-da!  The end.   

- Ok.  I'm sure there's probably some questions percolating.  I'm going to go back to piazza and 

see if we have any questions.  

- Again, Abida with another excellent question.  Are we using median to make  it as close to being 

log base 2 height as possible?  Yes, that's right.   Put another way, we're trying to keep the tree  

balanced, so if at each level we split the data exactly in half.  Then the levels below, we'll split it 

in half, and so on and as we go on down at each level we'll be splitting the data appropriately so 

that the branches will remain balanced.  Now you can't always do that perfectly, but yeah, that's 

the general idea.  

- Where is the root in the code?   When I was giving this presentation yesterday on campus, I 

defined the root,  I think, up here.  It turns out that as soon as you determine which feature to 

use in which split, you already have all the information you  need to define the root.  The first 

column is going to be the factor, the second column is going to  be the split Val, the next one is 

always going to be 1, because the left tree always starts to the left . And you don't know until 

this line, until you do this computation, how large the left tree is.  You could determine it by  

essentially executing this, but you don't know how many rows are in the left tree until you do 

this because the data size may be a little bit different.  

- Ok so that is how to build a tree using Quinlan's approach.  So now let's  talk a little bit about 

how do you determine the best feature. 
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- So in general what we want to do is we want to start with the feature that  segregates the data 

the best.   

- So imagine for a moment that we're doing classification.  In other words we're trying to decide is 

it a buy or a cell  for a particular stock.  We would like to find that for this feature, that root 

feature that groups, you know that splits it into the most similar groups, and  one group should 

be mostly buys and the other side should be mostly sells.    So which factor can help us make 

that split most effectively? 

- Then we go to this next problem of, ok, now I've got a group that has mostly  buys, how do I 

distinguish those few cells from the other buys.  And  hopefully there's another feature at that 

level that will help us make that  distinction.   

- So at each level we want to somehow choose the feature that does this separation most 

effectively.  And one way of thinking about that, or one term folks use to refer to it, is 

information gain.  So which factor provides the most  information about our data. 

- And there's a number of different ways to evaluate that or estimate it.  I believe the original 

Quinlan paper uses an approach  called entropy.  Even if they don't use entropy, that still is I 

think  nowadays widely regarded as the most effective method of selection. 

- Entropy  is just a way to measure... you know, once you've segregated your data into groups, to 

essentially measure the diversity or randomness of each group.  So, as an example, if each side 

had fifty percent buys and fifty percent  sells,  then we didn't really gain any information 

because it still is kind of  randomly distributed.    However if one side is all buys, and one side is 

all sells, that was the biggest  information gain we could possibly get. 

- And there are ways to measure entropy even for non-classification examples, you know where 

our data, instead of it just being  labeled a buy or a sell is a regression sort of problem.  
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- Now, don't fear.  I'm not gonna make you calculate entropy.  For this project we're going to use 

correlation.  And it turns out that correlation, actually, for regression problems is very closely 

related or correlated <ha-ha> with entropy.  So what we can do is we can look at each factor in  

our data and see how well correlated it is with our labels.  And the factor that  is most strongly 

correlated is going to help us make that split most effectively. 

- There's yet another method called the Gini index that is a essentially another  measure of 

diversity that people use as well.   

- Anyways, to summarize, I think  entropy is sort of the de facto standard.  Works very well.  If you 

were to download  and use the decision tree library in SciPy, you would find that they use  

entropy.  I think you can choose between entropy and gini index.   

- I want to  emphasize, though, for this project  you're not allowed to use the SciPy library.  Sorry, 

you have to write your own.   

- Okay.   I'm going to now give you an example of doing  this with real data.  But let me check and 

see if we got any questions before I do that.   

- In the 'build_tree' algorithm, how does the append work?  So for ndarrays, so look up the 

documentation for numpy and in particular, ndarrays and you'll see what append does.  Basic 

idea is it creates a new array out of these three arrays.  Puts root at the top, next left tree, finally 

right tree.   You may you may need to provide an  additional argument essentially telling it along 

which dimension should these arrays be appended together.  The default I believe is axis 0, 

which is rows  so you probably don't have to do it in this case.  Anyways that's what append 

does.  It makes a new ndarray out of your component ndarrays. 

 

- Ok let me now give you a concrete example.  Ok, this is also the example, by the way, from the 

graphical tree that I  showed you.  This is the same data in the same tree.  And that data, by the  

way, I started with just eight samples of data because, you  know, obviously I'm not gonna sit 
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here and do a 1600 node tree.  So I randomly selected eight rows out of the actual  wine data 

and then I picked, arbitrarily, three columns or three factors to  build this tree out of.  

- But keep in mind for the real data you've got 11 factors.  So the data that you're going to be 

building your trees with, you're gonna have  potentially 11 factors.   

- And anyways a factor 11, by the way, is alcohol content  and I don't recall what factor 2 and 10 

are.  But anyhow, each row here represents  one sample of, you know, a person scored a glass 

of wine.  In this case they scored  it 4 out of 10 and the quantitative measures for that glass of 

wine  were these three values.  You know, this represents another glass of wine and  potentially 

a different person who tasted it and their scoring. 

- Ok, so our  first question here.  Ok we're going to build a tree.  And by the way over here I've got 

space set  aside where we're going to fill in.  This is going to be our ndarray that  represents our 

tree. 

- Our first question here is which factor should we split on.  What's going to  be our root node.  

And another way of putting that is what is the most  information-providing factor.  So one way 

to do that is to use correlation . 

 

- Along the top here, each of these values represents the correlation  of this column of data with 

Y, with our labels.  And I just use the Excel  correlation function here.  So correl short for 

correlation.  Correlation of this  column with that column.   

- Now you notice that this one is negative.  It still is valuable information. All that means is, as this 

factor increases, Y decreases, and vice versa, but  it still is providing us information about Y.   

Now if you look at these three, we see that X11, factor 11, has the highest correlation.  So we're 

going to  choose that to make our root node, to do that first split. 

- By the way, when I share this spreadsheet with you, all these tabs along the bottom, you can  

think of sort of like different pages in a PowerPoint presentation.  
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- Ok so we started to fill in our data structure here representing our tree.  So we're  going to use 

factor 11.  Next question is what should the split val be?  Remember we  talked about using 

median.  So the easiest way to compute the median is, first  we sort our data.   

 

- So I've sorted now all of these rows according to this column.  It turns out that you don't 

explicitly have to do this in your program because  you can do that comprehension method I 

mentioned a moment ago.  But  anyways, if you sort, it becomes clearly evident what the 
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median value is.  That you just want the particular value that will split the data in half.  So, you 

know, we go  from 9.8 to 10.0.  So our split value is a 9.9.  

 

- Alright so I'm indicating now the data that's going to make up our left subtree here in red and 

the right subtree there in green.  Like I said, we already  know where our left subtree is going to 

start.  It's from the very next row.    So it's going to fill up this part of our data structure.  

 

- I'm going to move the right subtree down a little bit so we have some room to think up here.   

Now  we're calculating the correlation with this subtree.  So for instance, this now represents 
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the correlation of the data in our left subtree with Y and so on.  So we're not looking at the 

whole dataset anymore, we're  just looking at the left subtree.   

- So we've recursed down into computing the left subtree.  Again,  interestingly enough, this same 

factor X11 has the strongest correlation.  So  we're going to use that again to split on.  And it 

turns out it's already sorted  according to that factor so it's going to be between these two 

values.  So it'll  be 9.25 will be our split val because that's the median here. 

 

- So now we've split the data in two now.  We're going to compute a left, left subtree and a left, 

right subtree and again we need to calculate in each  case what is the correlation of each 

column with our labels Y.   



(c) 2016 by Tucker Balch, all rights reserved. 

 

- By the way we've added another row here which represents the decision node.  We're going  to 

split the data on factor 11 again we're going to use 9.25.   

- Now something to  observe here is when you get down to the point where you've only got two 

data  elements, it's very likely that you're going to see correlations of 1 and  negative one for 

each factor and there's a question of, ok,  in general if they have the same value, how to decide 

which one to split on? 

- There's  multiple correct answers there.  One is select randomly,  another is deterministically 

choose the first one, or deterministically choose the last one.  Whatever.  I recommend that you 

go with a deterministic approach  because we're going to have plenty of randomness in this data 

and in these trees anyways.  It's not really necessary to arbitrarily add  randomness here.  And 

you'll see in a moment some ways that we inject  randomness into this.  

- Ok so we've selected our root node.  We're now building the left subtree using that  root node.  

So this now represents the overall left subtree.  We're  now going to look at building the left 

subtree of the left subtree and I'm  going to arbitrarily choose factor two here as our split val.   
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- And the  median here turns out to be 7.48.  And now we have all the information we need to  

add our two leaf nodes.   

 

- So if X2 is less than or equal to 7.48, well  that's this leaf and we know the value is three.  Boom 

we fill that in.  Otherwise  we're going to the right and it's this leaf.  Value is four. 

- We similarly pop back up now and do the same thing with the right tree.  I should say  the left-

right tree and now we've completed the whole left subtree.   
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- One thing I want to point out here, the numbers I'm filling in here to point down to essentially 

the rows at  which the next sub trees begin are relative.  So this four means for instance  that 

the right subtree begins four rows down so 1, 2, 3, 4.  It's starting here and  this two for instance 

means the right leaf is two rows below, 1, 2.  So these values  are always relative 

- The reason for that is it makes bookkeeping a little  bit easier when you're traversing the tree, 

you know, to do a query.  It also  makes it a little bit easier when you're building the tree.   

- You could still make them absolute references, you know, it's up to you.  But  you have to pass 

around some more information to keep track of where you  are in the tree.  Doing it this way 

you don't ever really have to know where you are  in the tree as you're executing the algorithm. 
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- Okay so now we've fleshed out the complete left-hand subtree.  Then we start working on the 

right subtree and we  just skip to the end it is a long and boring story to go through the whole  

thing.   

 

- But here now, finally, is our entire data structure describing the tree.  So that's how you build a 

decision tree from sample data.  It's one way.  I'm  going to give you another way in just a 

moment. 

- But let me now go check and see what questions we've got.  Ok, no new questions. 
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- Let me now show you a different way to build a tree.  Before I show you that.  Let me ask you to 

think about something for a  while.   We'll take a look at this original definition of how to build a 

tree.  Which of these steps in this algorithm do you think are expensive?  You know, obviously, 

some are more expensive than others, but in particular, which one is probably the most 

expensive?  I'll be  quiet for a moment while you ponder that.  And I'm having a sip of wine 

myself.  Makes the lecture better. 

- Okay,  certainly one of the most expensive things to do is determining this best  feature to split 

on.  Why?  Well in the method I presented, if we're using correlation, calculating the correlation 

you know, for say 1600 rows...Numpy can do it quickly, I admit it, but it still of all the things we 

might do, is one of the more expensive and we have to do the correlation for each column of 

data  before we can decide what to split on.  

- So if there's one way that we could, you  know, one thing we can do to speed up our algorithm 

the most, it would probably be to make that part faster.   

- Another one is computing the median.  Now in the example I gave, I showed that you should 

first sort the data and then find the middle values.  And that will help you compute the median.  

It  turns out there's faster algorithms now that actually can compute the median in order N 

time.  You don't actually have to do the full sort.  So the median is order N  but it's a big N, so it 

can take a while 

- But anyways, long story  short, if we can figure out a way to do these two steps faster, that 

would overall help our algorithm be a lot faster, and that's exactly where random  trees come in. 
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- So we skip to random trees.  This is an algorithm by Adele Cutler.  She was a PhD student of 

Brieman who was at UC  Berkeley.  And he took JR Quinlan's ideas of, you know, creating  

decision trees, but expanded the idea greatly with random trees and random forests. 

- And Ms. Cutler who is now a professor in Utah produced I think one of  the best papers 

describing their methodology.  And she's carried it forward in a number of different ways.   

- But anyways, the general idea is this.  Rather than burn all that time trying to decide what the 

best feature is to split on, let's choose it randomly.  Clearly, picking a random number, you know 

picking a random number from 1 to 10 is faster than doing the correlation on 10 columns of 

1600 pieces of data.  So that speeds things up significantly.   

- Now you might naturally asked, um yeah it probably does make it faster, but  doesn't that screw 

up your tree?  So postpone that question for a second, and I'll answer it in a moment.   

- The initial answer is yes, it does impair the quality of the decision tree but there's something we 

can do to work around that and I'll get to that in a moment. 

- But the other thing she does is rather than  compute the median and you know having to sort or 

run the select  algorithm, you just choose a random row, two random rows, grab the feature  

value out of those rows and take their mean.   I just divide them by 2 and that's guaranteed to 

give you a split value that is somewhere not at the edges of the data, is somewhere in the 

middle.  It might be towards an edge but it's definitely not going to be at a very edge. 
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- So these two random selections here make the tree  building algorithm monstrously faster.  You 

still then have to go through the rest of the algorithm like I described before, but these two 

random selections make it much faster and much easier. 

- Okay now back to this earlier question of well doesn't that impair the quality of my tree?  The 

answer is yes, if you have only one tree.  But something we're going to get to  shortly either later 

this week or early next week is something called bagging and in general the idea here is it's 

better to have a learner that is composed of many learners, another term for that is ensemble 

learners, than just have a single learner.   

- So if you have a single tree and you build it carefully using this Quinlan method, yes it can do 

very good.  But if you have a learner that's built of multiple trees even if they're created 

randomly, its  performance can actually supersede that of the best individual tree.   

- Again we'll get into more detail on that little bit later but essentially a  random forest is a group 

of trees where each tree is computed somewhat  randomly. 

- Now I want to mention something about this randomness.  There's several  different ways that 

you can cause this forest to be random.  One of them is each tree is computed with these 

random numbers.   

- Another is that the data that you construct the tree from could be selected randomly.  So you're  

given a whole set of data from which to create a learner.  What you can do is subsample, you 

know, randomly select not all the data but some subsample of that data, create a tree, resample 

again, it's  with replacement.  You pick another group of data, build another tree, and for each 

tree you build, you grab some random assortment of that data.   

- So even if  you're building say the Quinlan type tree that isn't random at all, each tree that you 

build is built from a different selection of the data so it's  going to be a bit different.  And it turns 

out that these differences are important.  If all of your learners are identical, there's really no 

benefit to having multiple learners.  You want essentially uncorrelated learners or diversity 

among your learners.  So that's why these random approaches end up, when you combine them 

into an ensemble learner, give you a really valuable system. 

- Okay, I'm gonna check one more time for questions and then I want to wrap up  with the 

strengths and weaknesses of decision tree learners.  Let me check for questions here real quick.  

Never mind.  Glad to have you all participating by the way at this late  evening time. 
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- Ok, strengths and weaknesses of decision tree learners.  So you should look at a few things.  Let 

me actually build this list while I'm talking about it.  

- The cost of learning.  If you compare, for instance, what's the expense of creating a decision tree 

compared to say to creating a KNN learner.  So we went  through this fairly complex algorithm 

about how to build a decision tree, and as you can see, it can be expensive.  KNN, k-nearest 

neighbors is simple at learning time.  You just take the data and  plop it into ram and consult it 

later when you're doing queries.  So in terms of  cost of learning, decision trees lose to k-nearest 

neighbor.   

- I would say also that linear regression learners, they're somewhere in between.  To build a 

parametric model using linear regression takes a little bit longer than it does to just save things 

to memory like KNN, but doesn't take quite as long as it does to build a decision tree.  Andif 

you're building a decision forest, you know you  gotta multiply that by however many trees 

you're going to have in your forest.   

- Next is cost of query.  So among these three algorithms, K nearest neighbor, linear regression, 

and decision trees, I want you to think for a moment.  Which is the fastest, KNN, linear 

regression, or decision tree?  We  know in other words we've got our X factors and we want to 

say "Hey what's the predicted value?  What's the predicted Y using this data?"  

- I'll  pause for secondly, let you consider, then give you the answer.  Linear regression is the 

fastest.  All you've got to do if you have a  regression model, it's just a set of parameters, you 

just, you know, X1 times parameter 1, X2 times parameter 2.  Add them all together.  Boom 

that's the answer.  It's blazingly fast.   
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- So in many cases linear regression learners don't have such a high quality in terms of you know 

what's the  prediction versus the actual result, but they are blazingly fast to learn and blazingly 

fast query.  KNN is the worst of them all because when you're querying  a KNN learner, you have 

to compute the distance from your query to all of your  individual data points, then sort them 

and find the closest k data  points.  It's extremely expensive to query a k-nearest neighbor.  

- Decision trees, again, are somewhere in between.  The beauty of them is because they are 

binary trees, for say a thousand elements, on average you only  have to ask I think whatever  log 

base 2 of a thousand is.  I think it's about 10.   

- Anyways so if you build a tree with a thousand samples, to query it, you would have to ask at 

most 10 binary questions and its really  fast.  So again decision trees are somewhere there in 

between. 

- Now there are some strong benefits of decision trees that I want to mention here.  One is you 

don't have to normalize your data.  So I believe in one of the online lectures, we're talking about 

this problem of suppose one of your factors  ranges from zero to a thousand and another factor 

ranges from 0 to 1.  It turns out  that if you build a K nearest neighbor type model from that 

data, the factor  that ranges from zero to a thousand ends up overwhelming the other factors 

and turns out to just be the most important factor even though it may not really be the most 

important factor.   

- So typically with KNN learners you have to do  something to normalize your data so that each 

dimension essentially has the same  range.  So typically you take the mean of all the data for a 

factor one and normalize it to that mean and standard deviation.   

- You don't have to do  that for decision trees.  They automatically determine what appropriate  

thresholds are as they build the tree.   

- Just  trying to think of the other benefits of decision trees.  I'm sure the ones I mentioned the 

other day will occur to me as soon as we  finish the lecture, but I'll add them to the presentation 

later on. 

- But anyways, that concludes my lecture to you on how to build a tree.   

- I'll do one more check on Piazza to see if we got any more questions and then I'll  wrap it up. 

- Pat adds a link to scikit-learn and pandas.  I believe he's pointing to something that lets you 

visualize a tree once  you've created it.  That's nice.  Ah and thank you.  Pat has provided log 

base 2 of several numbers for me.  Thanks.   

- Ok, getting to this last question.   The reason we don't have to normalize the data is each 

variable is treated the same weight and it's based on correlation or entropy to decide the best 

split?  Yeah, good point.  We're essentially looking at correlation to decide which factor to use 

and then, yeah, we use the median to decide the split value, so there's no additional benefit to 

normalizing it first.   If, in the case of KNN, if you didn't normalize it, like I said, that particular  

factor that varied over a wide range will become the most important one.   

- Ok doing one more check for questions and then I'm going to wrap up.  Ok thank you everybody 

for your attention.  I am going to go ahead and close up the presentation.  And yes I will post  

these slides to the wiki.  This is kind of fun.  Anyways, let me stop that and I'll stop the 

broadcast.  Bye-bye.  Have a great evening and see you in TV land.    


