
Intelligent Evaluation and Feedback

in Support of a Credit-Bearing MOOC

David Joyner(&)

Georgia Institute of Technology, Atlanta, GA 30332, USA

david.joyner@gatech.edu

Abstract. Massive Open Online Courses (MOOCs) may reach a massive

number of people, but few MOOCs count for credit. Scaling rigorous assess-

ment, feedback, and integrity checks presents difficulties. We implemented an

AI system for a CS1 MOOC-for-credit to address both scale and endorsement.

In this analysis, we present the design of the system and an evaluation of the

course. We observe that students in the online course achieve comparable

learning outcomes, report a more positive student experience, and identify AI-

equipped programming problems as the primary contributor to their experiences.

Keywords: Automated evaluation � MOOCs � CS1

1 Introduction

In this work, we present an online version of a CS1 class at a large state university. The

course aims to be a MOOC-for-credit: it is offered to on-campus students for degree

credit, but is also available to MOOC students from all over the world for free. In order

to accomplish this, mechanisms must be found for scaling up the human grading found

in a traditional campus while preserving (or improving) the learning outcomes and

student experience. Toward this end, the CS1 course we present here is built with a

strong emphasis on applying AI to the evaluation and feedback process. At time of

writing, 440 students have enrolled in the course for credit, while 12,000 students have

participated in the free massive open online course (MOOC) on edX.

2 Related Work

Work has been done on applying AI to computer science evaluations. There are many

historical (Web-CAT [4], OKPy [14], and Autolab [17]) and modern (Vocareum [9],

Zybooks, Coursera [1], Udacity [7]) platforms and frameworks targeting this space.

Wilcox [16] gives an overview of the automated evaluation space. These tools mostly

focus on evaluation, but it is also important to provide feedback. Wiese et al. [15], for

example, automatically generate style feedback for students, and Glassman et al. cat-

egorize submissions into patterns for tailored feedback [5]. There also exist several

intelligent tutoring systems for computer programming [2, 3, 12, 13].

© Springer International Publishing AG, part of Springer Nature 2018

C. Penstein Rosé et al. (Eds.): AIED 2018, LNAI 10948, pp. 166–170, 2018.

https://doi.org/10.1007/978-3-319-93846-2_30



3 Intelligent Evaluation and Feedback

The online CS1 class described herein can be taken by any student to fulfill their state

CS requirement and routinely draws more than 1000 students per year. To scale,

assignments generally need to be automatically evaluated, but to maintain credit

worthiness, the evaluations must be rigorous, authentic, and comparable to traditional

on-campus offerings of the course. To support this, we constructed an infrastructure for

intelligent evaluation and feedback. We then populated it with 300 programming

problems, including 30 proctored exam problems, leveraging this framework. Addi-

tional details of the course design can be found in [8–10]; this analysis emphasizes the

design of the course’s intelligent feedback.

3.1 Global and Local Infrastructure

The infrastructure for intelligent evaluation and feedback has two parts: a global,

general framework for initializing automated evaluation, gathering results, and pre-

senting results to the user; and a set of local, specific parameters targeted at individual

problems. We dub the global framework “Phineas” and the local parameters “Ferb”.

When a student submits a coding problem, Phineas gathers together the student’s

code and bundles it into an inspectable object, allowing for deep code inspection and

unit testing. Phineas sends these arguments to Ferb, a set of problem-specific param-

eters, such as a routine for intelligently generating new unit tests, a set of forbidden or

required code, and explicit requirements such as method signatures.

Local evaluation of a student’s submission against Ferb’s parameters runs through

three stages: pre-processing, unit testing, and post-processing. This pre-processing

covers those checks necessary for the unit tests to be inspected. This stage focuses on

the presence of specific functions, objects, methods, and variables.

If those preprocessing checks fail, the student is informed of that failure immedi-

ately, and subsequent checks are not run. If the preprocessing checks pass, the code is

executed for unit tests generated by Ferb. This generates a list of the results, with each

result including the input arguments, the expected output, the actual output, and

whether the result is considered a pass, fail, or warning.

After running unit tests, the code is finally checked against the post-processing

checks. These checks are typically against data generated during runtime, such as a

count of the number of loop iterations or recursive calls, and thus may only run after

execution. The results from these checks are appended to the corresponding lists of

passed and failed results.

These results are then returned to Phineas in the form of three lists: a list of

successes, a list of failures, and a list of warnings. Phineas then performs a follow-up

check on the list of failures and searches for corresponding global feedback. For

example, if one of the failures references an unsupported operand TypeError, Phineas

may inject general feedback on the likely causes of this error.

Then, Phineas uses these lists to write a file named full_results.txt; this file lists the

failed requirements, then the warnings, and then the successes. Phineas then writes a

brief result summary to provide in the console window. If there are any failures,

Phineas selects the first failure to provide, closing with a pointer to the full results file.

Intelligent Evaluation and Feedback in Support of a Credit-Bearing MOOC 167



If there are no failures, Phineas first informs students that their code passed the

problem; if there are warnings, it then lets the student know that there may nonetheless

be room for improvement. Once the student passes the problem, Phineas adds to their

workspace one or more sample solutions written by the problem author. These sample

solutions demonstrate optimal or alternate solutions for implicit feedback [6].

3.2 Problem Content

The course has over 300 coding problems, each with its a version of Ferb with

parameters suited to the problem’s requirements. Four problem templates are available:

• Variable Inspection: Direct inspection of variables and their values.

• Console Output: Inspection of content printed when executing student code after

injecting intelligently-generated alternate values for existing variables.

• Function Output: Comparison of output of function calls from students’ code with

correct code based on intelligently-generated test cases.

• Object Inspection: Experimenting with the success of certain object instantiations

and follow-up method calls or attribute checks.

All four problem templates come equipped with additional intelligent tolerance,

such as the option to ignore minor differences in whitespace in output, to automatically

perform type conversions, and to ignore rounding errors as deemed necessary.

4 Course Evaluation

In checking the credit-worthiness of the online course, we are concerned with learning

outcomes and student experience. Students should learn as much in the online course as

in the traditional, and the student experience should be at least comparably positive. To

check this, we performed a pseudo-experiment comparing students in two semesters of

this online for-credit course to the equivalent on-campus course.

4.1 Learning Outcomes

To evaluate learning outcomes, students in both the online and the traditional version of

the course were given the SCS1 computer science assessment as a pre-test and post-test

[11]. In this analysis, we investigated the effect that the AI-supported course may have on

students of different levels of prior experience.We compared students within four specific

subgroups: those who have previously completed a CS course (“Prior Expertise”), those

who have previously started by failed or withdrawn from a CS course (“Prior Experi-

ence”), those who are self-taught or otherwise have some informal experience (“Informal

Experience”), and thosewith no prior experience (“NoExperience”). Table 1 shows these

results.

We performed t-tests on each of these eight pairs. “Prior Experience” was statis-

tically significant at a = 0.05 (t = 2.14, p = 0.0445). “Prior Expertise” was statistically

significant at a = 0.10 (t = 1.84, p = 0.0699). No other differences were significant.

However, these subdivisions mean that the sample sizes are small and this data has

168 D. Joyner



been re-tested, and so replication in future semesters is needed. Additionally, this

analysis only evaluates starting points and outcomes, not learning gains: difference in

pre-test scores suggests students with prior expertise did not learn significantly more in

the online section than the traditional (+2.34 vs. +1.51), but students with informal

experience may have learned far more (+5.05 in the online version, +0.89 in the

traditional version). The sample sizes are too small, however, to include only students

who took both tests, and so this difference may be due to a response bias.

4.2 Student Experience

We asked students in both sections to evaluate their version of the course on a 7-point

Likert scale. We performed a two-tailed Mann-Whitney U Test on the distributions to

test for differences and summarized responses with interpolated medians. Online stu-

dents rated their version higher than traditional students (6.35 to 5.58) with statistical

significance (Z = –5.09, p < 0.01). When asking students to compare the class to other

courses, students rated the online course as comparing more favorably (6.07) than the

traditional course (5.37) with statistical significance (Z = –4.61, p < 0.01).

5 Conclusions

These evaluations support this AI-based MOOC-for-credit. Compared to a traditional

section, students in the online section learned as much (as assessed by pre-test and post-

test scores) while also reporting a higher student satisfaction. These empirical advan-

tages come alongside procedural and economic advantages as well. Due to the heavy

emphasis on AI-based grading and feedback, no teaching assistants are required to

administer the course (although support for office hours, recitations, and forums are

helpful). This, in turn, allows the course to be released in a self-paced MOOC because

there is no manual evaluation to mandate a human grading workflow. Finally, the

persistent nature of the MOOC mean that improvements carry over automatically to

future semesters: all work is an investment into all future semesters instead of only into

the current semester.

Table 1. Pre-test and post-test scores of both course versions by prior experience. Mean test

scores are bolded; sample sizes are italicized; standard deviations are unstylized.

Prior expertise Prior experience

Traditional Online Traditional Online

Pre-test 8.49 75 7.65 10.31 39 5.43 6.33 18 4.01 6.73 15 2.46

Post-test 10.00 37 5.92 12.26 39 4.74 7.11 9 5.90 11.43 14 3.84

Informal experience No experience

Traditional Online Traditional Online

Pre-test 9.41 41 5.46 7.95 22 4.16 5.40 103 2.14 5.22 46 2.27

Post-test 10.30 20 7.15 13.00 20 6.56 8.79 53 5.08 9.33 46 4.04

Intelligent Evaluation and Feedback in Support of a Credit-Bearing MOOC 169



References

1. Alber, S., Debiasi, L.: Automated assessment in massive open online courses. Seminar aus

Informatik, University of Salzburg, July 2013

2. Brusilovsky, P., Schwarz, E., Weber, G.: ELM-ART: an intelligent tutoring system on world

wide web. In: Frasson, C., Gauthier, G., Lesgold, A. (eds.) ITS 1996. LNCS, vol. 1086,

pp. 261–269. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61327-7_123

3. Butz, C.J., Hua, S., Maguire, R.B.: A web-based intelligent tutoring system for computer

programming. In: Web Intelligence 2004, pp. 159–165. IEEE, September 2004

4. Edwards, S.H., Perez-Quinones, M.A.: Web-CAT: automatically grading programming

assignments. In: ACM SIGCSE Bulletin, vol. 40, no. 3, pp. 328–328. ACM, June 2008

5. Glassman, E.L., Scott, J., Singh, R., Guo, P.J., Miller, R.C.: OverCode: visualizing variation

in student solutions to programming problems at scale. ACM Trans. Comput. Hum. Interact.

(TOCHI) 22(2), 7 (2015)

6. Goel, A., Joyner, D.A.: Formative assessment and implicit feedback in online learning. In:

Proceedings of Learning with MOOCs III, Philadelphia, PA (2016)

7. Goel, A., Joyner, D.A.: Using AI to teach AI: lessons from an online AI class. AI Mag. 38

(2), 48–58 (2017)

8. Joyner, D.A.: Congruency, adaptivity, modularity, and personalization: four experiments in

teaching introduction to computing. In: Proceedings of the Fourth (2017) ACM Conference

on Learning @ Scale, pp. 307–310. ACM, April 2017

9. Joyner, D.: Building purposeful online learning: outcomes from blending CS1. In:

Margulieux, L., Goel, A. (eds.) Blended Learning in Practice: A Guide for Researchers

and Practitioners. MIT Press (in press)

10. Joyner, D.: Towards CS1 at scale: building and testing a MOOC-for-credit candidate. In:

Proceedings of the Fifth (2018) ACM Conference on Learning @ Scale. ACM, June 2018

11. Parker, M.C., Guzdial, M., Engleman, S.: Replication, validation, and use of a language

independent CS1 knowledge assessment. In: Proceedings of the 2016 ACM Conference on

International Computing Education Research, pp. 93–101. ACM, August 2016

12. Reiser, B.J., Anderson, J.R., Farrell, R.G.: Dynamic Student Modelling in an Intelligent tutor

for LISP programming. In: IJCAI 1985, pp. 8–14, August 1985

13. Soloway, E.M., Woolf, B., Rubin, E., Barth, P.: MENO-II: an intelligent tutoring system for

novice programmers. In: Proceedings of the 7th International Joint Conference on Artificial

Intelligence Volume 2, pp. 975–977. Morgan Kaufmann Publishers Inc., August 1981

14. Sridhara, S., Hou, B., Lu, J., DeNero, J.: Fuzz testing projects in massive courses. In:

Proceedings of the Third (2016) ACM Conference on Learning @ Scale, pp. 361–367.

ACM, April 2016

15. Wiese, E.S., Yen, M., Chen, A., Santos, L.A., Fox, A.: Teaching students to recognize and

implement good coding style. In: Proceedings of the Fourth (2017) ACM Conference on

Learning @ Scale, pp. 41–50. ACM, April 2017

16. Wilcox, C.: Testing strategies for the automated grading of student programs. In:

Proceedings of the 47th ACM Technical Symposium on Computing Science Education,

pp. 437–442. ACM, February 2016

17. Zimmerman, J. Autolab: Autograding for All. Accessed http://autolab.github.io/2015/03/

autolab-autograding-for-all/

170 D. Joyner


